Andre Schidler
Projektass.(FWF) Dipl.-Ing. Dr.techn. / BSc
Role
-
PostDoc Researcher
Algorithms and Complexity, E192-01
Publications
-
Computing optimal hypertree decompositions with SAT
/
Schidler, A., & Szeider, S. (2023). Computing optimal hypertree decompositions with SAT. Artificial Intelligence, 325, Article 104015. https://doi.org/10.1016/j.artint.2023.104015
Download: PDF (1.74 MB)
Projects: REVEAL-AI (2020–2024) / SLIM (2019–2024) / STRIDES (2023–2026) -
SAT-boosted tabu search for coloring massive graphs
/
Schidler, A., & Szeider, S. (2023). SAT-boosted tabu search for coloring massive graphs. ACM Journal on Experimental Algorithmics, 28, Article 1.5. https://doi.org/10.1145/3603112
Download: PDF (1.15 MB)
Projects: DK - Logic (2014–2023) / REVEAL-AI (2020–2024) / SLIM (2019–2024) / STRIDES (2023–2026) -
Computing Twin-width with SAT and Branch & Bound
/
Schidler, A., & Szeider, S. (2023). Computing Twin-width with SAT and Branch & Bound. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23) (pp. 2013–2021). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2023/224
Download: PDF (263 KB)
Projects: DK - Logic (2014–2023) / REVEAL-AI (2020–2024) / SLIM (2019–2024) / STRIDES (2023–2026) -
Scalability for SAT-based combinatorial problem solving
/
Schidler, A. (2023). Scalability for SAT-based combinatorial problem solving [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.113248
Download: PDF (6.06 MB) - A Dynamic MaxSAT-based Approach to Directed Feedback Vertex Sets / Kiesel, R., & Schidler, A. (2023). A Dynamic MaxSAT-based Approach to Directed Feedback Vertex Sets. In 2023 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX) (pp. 39–52). https://doi.org/10.1137/1.9781611977561.ch4
- PACE Solver Description: DAGer – Cutting out Cycles with MaxSAT / Kiesel, R., & Schidler, A. (2022). PACE Solver Description: DAGer – Cutting out Cycles with MaxSAT. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). 17th International Symposium on Parameterized and Exact Computation (IPEC 2022), Germany. https://doi.org/10.4230/LIPIcs.IPEC.2022.32
-
Threshold Treewidth and Hypertree Width
/
Ganian, R., Schidler, A., Sorge, M., & Szeider, S. (2022). Threshold Treewidth and Hypertree Width. Journal of Artificial Intelligence Research, 74, 1687–1713. https://doi.org/10.1613/JAIR.1.13661
Download: PDF (6.1 MB)
Projects: NFPC (2018–2022) / Parameterisierte Analyse in der Künstlichen Intelligenz (2021–2026) / REVEAL-AI (2020–2024) / SLIM (2019–2024) -
Weighted Model Counting with Twin-Width
/
Ganian, R., Pokrývka, F., Schidler, A., Simonov, K., & Szeider, S. (2022). Weighted Model Counting with Twin-Width. In K. S. Meel & O. Strichman (Eds.), 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022) (pp. 1–17). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAT.2022.15
Download: PDF (719 KB)
Projects: NFPC (2018–2022) / Parameterisierte Analyse in der Künstlichen Intelligenz (2021–2026) / REVEAL-AI (2020–2024) / SLIM (2019–2024) -
Tractable Abstract Argumentation via Backdoor-Treewidth
/
Dvořák, W., Hecher, M., König, M., Schidler, A., Szeider, S., & Woltran, S. (2022). Tractable Abstract Argumentation via Backdoor-Treewidth. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (pp. 5608–5615). AAAI Press. https://doi.org/10.1609/aaai.v36i5.20501
Download: PDF (1.52 MB)
Projects: HYPAR (2019–2024) / REVEAL-AI (2020–2024) / SLIM (2019–2024) -
SAT-Based Local Search for Plane Subgraph Partitions
/
Schidler, A. (2022). SAT-Based Local Search for Plane Subgraph Partitions. In X. Goaoc & M. Kerber (Eds.), 38th International Symposium on Computational Geometry (SoCG 2022) (pp. 1–8). Schloss Dagstuhl --Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2022.74
Download: PDF (865 KB)
Projects: REVEAL-AI (2020–2024) / SLIM (2019–2024) - A SAT Approach to Twin-Width / Schidler, A., & Szeider, S. (2022). A SAT Approach to Twin-Width. In 2022 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX) (pp. 67–77). https://doi.org/10.1137/1.9781611977042.6
Supervisions
-
SAT-based local improvement for the closest string problem
/
Voboril, F. (2024). SAT-based local improvement for the closest string problem [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.119021
Download: PDF (1.79 MB)