TU Wien Informatics

About

Distributed systems, epistemic logic, proof theory

Role

2023W

 

2023

  • Extensions of K5: Proof Theory and Uniform Lyndon Interpolation / van der Giessen, I., Jalali, R., & Kuznets, R. (2023). Extensions of K5: Proof Theory and Uniform Lyndon Interpolation. In D. R. S. Ramanayake & J. Urban (Eds.), Automated Reasoning with Analytic Tableaux and Related Methods: 32nd International Conference, TABLEAUX 2023, Prague, Czech Republic, September 18–21, 2023, Proceedings (pp. 263–282). Springer. https://doi.org/10.1007/978-3-031-43513-3_15
    Download: publisher pdf (468 KB)
    Project: ByzDEL (2020–2025)

2022

  • Nested Sequents, Kripke Models, and Uniform Interpolation / van der Giessen, I., Jalali, R., & Kuznets, R. (2022, November 1). Nested Sequents, Kripke Models, and Uniform Interpolation [Conference Presentation]. Proof-theoretic and algebraic aspects of (intuitionistic) modal logics, Utrecht, Netherlands (the).
  • Framing faultiness Kripke style / van Ditmarsch, H., Fruzsa, K., & Kuznets, R. (2022, September 6). Framing faultiness Kripke style [Conference Presentation]. MOSAIC: Modalities in Substructural Logics: Theory, Methods and Applications, Kick Off Conference, Capaccio Paestum, Italy.
    Download: PDF (309 KB)
  • A new hope / van Ditmarsch, H., Fruzsa, K., & Kuznets, R. (2022). A new hope. In D. Fernández-Duque, A. PALMIGIANO, & S. Pinchinat (Eds.), Advances in Modal Logic, Volume 14 (pp. 349–369). College Publications. https://doi.org/10.34726/2821
    Download: publisher pdf (869 KB)

2021

  • Justification logic for constructive modal logic / Kuznets, R., Marin, S., & Straßburger, L. (2021). Justification logic for constructive modal logic. Journal of Applied Logics, 8(8), 2313–2332. https://doi.org/10.34726/2943
    Download: publisher pdf (506 KB)
    Projects: LOGFRADIG (2013–2017) / NestSIRea (2015–2017) / ZK 35-G (2019–2024)
  • Interpolation for intermediate logics via injective nested sequents / Kuznets, R., & Lellmann, B. (2021). Interpolation for intermediate logics via injective nested sequents. Journal of Logic and Computation, 31(3), 797–831. https://doi.org/10.1093/logcom/exab015
  • Intuiting Duals of Proofs / Kuznets, R., Marin, S., & Strassburger, L. (2021). Intuiting Duals of Proofs. Milano Logic Group Logic Lunch Seminar Series, online, Italy, International. http://hdl.handle.net/20.500.12708/87263
  • Uniform Interpolation via Nested Sequents / van der Giessen, I., Jalali, R., & Kuznets, R. (2021). Uniform Interpolation via Nested Sequents. In Logic, Language, Information, and Computation (pp. 337–354). Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-88853-4_21
  • Fire! / Fruzsa, K., Kuznets, R., & Schmid, U. (2021). Fire! In Electronic Proceedings in Theoretical Computer Science (pp. 139–153). Electronic Proceedings in Theoretical Computer Science. https://doi.org/10.4204/eptcs.335.13
  • Uniform interpolation via nested sequents and hypersequents / van der Giessen, I., Jalali, R., & Kuznets, R. (2021). Uniform interpolation via nested sequents and hypersequents (2105.10930). http://hdl.handle.net/20.500.12708/40454

2020

2019

  • Maehara-style Modal Nested Calculi / Kuznets, R., & Straßburger, L. (2019). Maehara-style Modal Nested Calculi. Archive for Mathematical Logic, 58(3–4), 359–385. https://doi.org/10.1007/s00153-018-0636-1
  • Translating Quantitative Semantic Bounds into Nested Sequents / Kuznets, R., & Lellmann, B. (2019). Translating Quantitative Semantic Bounds into Nested Sequents. Fifth TICAMORE MEETING, Wien, Austria. http://hdl.handle.net/20.500.12708/86976
  • Time and Retrocausality in Distributed Systems / Kuznets, R. (2019). Time and Retrocausality in Distributed Systems. Goedel’s Legacy, Wien, Austria. http://hdl.handle.net/20.500.12708/86975
  • Byzantine Causal Cone / Kuznets, R., Prosperi, L., Schmid, U., & Fruzsa, K. (2019). Byzantine Causal Cone. Workshop on Formal Reasoning in Distributed Algorithms (FRiDA), Wien, Austria. http://hdl.handle.net/20.500.12708/86905
  • Causality in the Age of Fake News / Kuznets, R. (2019). Causality in the Age of Fake News. Seminar “Logic and Theoretical Computer Science”, University of Bern (2019), Bern, Non-EU. http://hdl.handle.net/20.500.12708/86904
  • Extrapolating Interpolation / Kuznets, R. (2019). Extrapolating Interpolation. Proof Theory in Logic workshop, Utrecht, EU. http://hdl.handle.net/20.500.12708/86880
  • Causality and Epistemic Reasoning in Byzantine Multi-Agent Systems / Kuznets, R., Prosperi, L., Schmid, U., & Fruzsa, K. (2019). Causality and Epistemic Reasoning in Byzantine Multi-Agent Systems. In L. Moss (Ed.), Electronic Proceedings in Theoretical Computer Science (pp. 293–312). Electronic Proceedings in Theoretical Computer Science. https://doi.org/10.4204/eptcs.297.19
  • Epistemic Reasoning with Byzantine-Faulty Agents / Kuznets, R., Prosperi, L., Schmid, U., & Fruzsa, K. (2019). Epistemic Reasoning with Byzantine-Faulty Agents. In A. Herzig & A. Popescu (Eds.), Frontiers of Combining Systems (pp. 259–276). Springer. https://doi.org/10.1007/978-3-030-29007-8_15
  • Knowledge in Byzantine Message-Passing Systems I: Framework and the Causal Cone / Prosperi, L., Kuznets, R., Schmid, U., Fruzsa, K., & Gréaux, L. (2019). Knowledge in Byzantine Message-Passing Systems I: Framework and the Causal Cone (TUW-260549). http://hdl.handle.net/20.500.12708/39204
  • Through an Inference Rule, Darkly / Kuznets, R. (2019). Through an Inference Rule, Darkly. In S. Centrone, S. Negri, D. Sarikaya, & P. Schuster (Eds.), Mathesis Universalis, Computability and Proof (pp. 131–158). Springer International Publishing. https://doi.org/10.1007/978-3-030-20447-1_10
  • Logics of Proofs and Justifications / Kuznets, R., & Studer, T. (2019). Logics of Proofs and Justifications. College Publications. http://hdl.handle.net/20.500.12708/24606

2018

2017

  • Herbrand's Phenomena in Justification Logic / Kuznets, R. (2017). Herbrand’s Phenomena in Justification Logic. Collegium Logicum 2017, Proof Theory: Herbrand’s Theorem Revisited, Wien, Austria. http://hdl.handle.net/20.500.12708/86566
  • The Byzantine Mind / Kuznets, R. (2017). The Byzantine Mind. Seminar Logic and Theoretical Computer Science, University of Bern (2017), Bern, Schweiz, Non-EU. http://hdl.handle.net/20.500.12708/86565
  • Through an Inference Rule, Darkly / Kuznets, R. (2017). Through an Inference Rule, Darkly. Humboldt Kolleg “​Proof Theory as Mathesis Universalis,” Menaggio, Italien, EU. http://hdl.handle.net/20.500.12708/86512
  • Efficient Proof Systems for Modal Logics / Kuznets, R., & Strassburger, L. (2017). Efficient Proof Systems for Modal Logics. 29th European Summer School in Logic, Language, and Information (ESSLLI 2017), Toulouse, Frankreich, EU. http://hdl.handle.net/20.500.12708/86479
  • Modal Calculi from Semantics: a Case Study / Kuznets, R. (2017). Modal Calculi from Semantics: a Case Study. Workshop Translating and Discovering Calculi for Modal and Related Logics 2017, Wien, Austria. http://hdl.handle.net/20.500.12708/86100
  • Justification logic for constructive modal logic / Kuznets, R., Marin, S., & Straßburger, L. (2017). Justification logic for constructive modal logic (No. 01614707). http://hdl.handle.net/20.500.12708/39304
  • Maehara-style Modal Nested Calculi / Kuznets, R., & Straßburger, L. (2017). Maehara-style Modal Nested Calculi (RR-9123). http://hdl.handle.net/20.500.12708/39305

2016

  • Weak Arithmetical Interpretations for the Logic of Proofs / Kuznets, R., & Studer, T. (2016). Weak Arithmetical Interpretations for the Logic of Proofs. Logic Journal of the IGPL, 24(3), 424–440. https://doi.org/10.1093/jigpal/jzw002
  • Grafting Hypersequents onto Nested Sequents / Kuznets, R., & Lellmann, B. (2016). Grafting Hypersequents onto Nested Sequents. Logic Journal of the IGPL, 24(3), 375–423. https://doi.org/10.1093/jigpal/jzw005
  • Interpolation Method for Multicomponent Sequent Calculi / Kuznets, R. (2016). Interpolation Method for Multicomponent Sequent Calculi. In S. Artemov & A. Nerode (Eds.), Logical Foundations of Computer Science. International Symposium, LFCS 2016 (pp. 202–218). LNCS/Springer. https://doi.org/10.1007/978-3-319-27683-0_15
  • How I stopped worrying about formulas and learned to interpolate / Kuznets, R. (2016). How I stopped worrying about formulas and learned to interpolate. Logic and Theory Group, Institute of Computer Science, University of Bern, Bern, Schweiz, Non-EU. http://hdl.handle.net/20.500.12708/86511
  • Interpolation beyond sequent calculi: modal, intuitionistic, and intermediate logics / Kuznets, R. (2016). Interpolation beyond sequent calculi: modal, intuitionistic, and intermediate logics. FISP: The Fine Structure of Formal Proof Systems and their Computational Interpretations at the University of Innsbruck, Innsbruck, Austria. http://hdl.handle.net/20.500.12708/86412
  • Syntactic Interpolation: Limits and Challenges / Kuznets, R. (2016). Syntactic Interpolation: Limits and Challenges. Workshop “Proof Theory and Modal Logic,” Turin, Italien, EU. http://hdl.handle.net/20.500.12708/86347
  • Craig and Lyndon Interpolation Via Labelled Sequent Calculi / Kuznets, R. (2016). Craig and Lyndon Interpolation Via Labelled Sequent Calculi. Modalities, Conditionals, and Values, Symposium on Philosophical Logic in Celebration of the Centenary of Georg Henrik von Wright at the University of Helsinki, Helsinki, Finnland, EU. http://hdl.handle.net/20.500.12708/86348
  • Syntax Meets Semantcs to Prove Interpolation / Kuznets, R. (2016). Syntax Meets Semantcs to Prove Interpolation. Syntax Meets Semantics 2016, Barcelona, EU. http://hdl.handle.net/20.500.12708/86316
  • Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi / Kuznets, R. (2016). Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi. In L. Michael & A. C. Kakas (Eds.), Logics in Artificial Intelligence (pp. 320–335). Springer LNCS. https://doi.org/10.1007/978-3-319-48758-8_21
  • Craig Interpolation via Hypersequents / Kuznets, R. (2016). Craig Interpolation via Hypersequents. In D. Probst & P. Schuster (Eds.), Concepts of Proof in Mathematics, Philosophy, and Computer Science (pp. 193–214). Walter de Gruyter GmbH. https://doi.org/10.1515/9781501502620-012

2015

  • Modal Interpolation via Nested Sequents / Fitting, M., & Kuznets, R. (2015). Modal Interpolation via Nested Sequents. Annals of Pure and Applied Logic, 166(3), 274–305. https://doi.org/10.1016/j.apal.2014.11.002
  • Interpolation Method for Multicomponent Sequent Calculi / Kuznets, R. (2015). Interpolation Method for Multicomponent Sequent Calculi. Seminar “Logic and Theoretical Computer Science”, Universität Bern, Bern, Schweiz, Non-EU. http://hdl.handle.net/20.500.12708/86346
  • Proof-theoretic Approach to Craig Interpolation / Kuznets, R. (2015). Proof-theoretic Approach to Craig Interpolation. Special Session on Proof Theory at the Logic Colloquium 2015, Helsinki, Finnland, EU. http://hdl.handle.net/20.500.12708/86146
  • Justification Logic / Kuznets, R. (2015). Justification Logic. Eleventh International Tbilisi Summer School in Logic and Language, Tiflis, Georgien, Non-EU. http://hdl.handle.net/20.500.12708/86101
  • Grafted Hypersequents / Kuznets, R. (2015). Grafted Hypersequents. Graduate Seminar Logic and Information (Münchenwiler Meeting) of Universities of Bern, Neuchâtel, and Fribourg within the framework of the Swiss Joint Master of Science in Computer Science program, Münchenwiler, Schweiz, Non-EU. http://hdl.handle.net/20.500.12708/86099
  • Realization Theorems for Justification Logics: Full Modularity / Borg, A., & Kuznets, R. (2015). Realization Theorems for Justification Logics: Full Modularity. In H. De Nivelle (Ed.), Lecture Notes in Computer Science (pp. 221–236). Springer LNCS. https://doi.org/10.1007/978-3-319-24312-2_16
  • Grafting Hypersequents onto Nested Sequents / Kuznets, R., & Lellmann, B. (2015). Grafting Hypersequents onto Nested Sequents (1502.00814). http://hdl.handle.net/20.500.12708/38665

2014