TU Wien Informatics

20 Years

Role

2024

  • A Privacy Enforcing Framework for Data Streams on the Edge / Sedlak, B., Murturi, I., Donta, P. K., & Dustdar, S. (2024). A Privacy Enforcing Framework for Data Streams on the Edge. IEEE Transactions on Emerging Topics in Computing, 12(3), 852–863. https://doi.org/10.1109/TETC.2023.3315131
    Projects: AloTwin (2023–2025) / FogProtect (2020–2022) / TEADAL (2022–2025)
  • Distributed AI in Zero-Touch Provisioning for Edge Networks: Challenges and Research Directions / Hazra, A., Morichetta, A., Murturi, I., Lovén, L., Dehury, C. K., Casamayor Pujol, V., Donta, P. K., & Dustdar, S. (2024). Distributed AI in Zero-Touch Provisioning for Edge Networks: Challenges and Research Directions. Computer, 57(3), 69–78. https://doi.org/10.1109/MC.2023.3334913
  • Distributed Computing Continuum Systems: Emerging approaches for intelligent, self-adaptive and secure operation / Frangoudis, P., & Murturi, I. (2024, February 28). Distributed Computing Continuum Systems: Emerging approaches for intelligent, self-adaptive and secure operation [Presentation]. Tutorial at the University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia.
    Project: AloTwin (2023–2025)
  • Collaborative Inference in DNN-Based Satellite Systems with Dynamic Task Streams / Guan, J., Zhang, Q., Murturi, I., Donta, P. K., Dustdar, S., & Wang, S. (2024). Collaborative Inference in DNN-Based Satellite Systems with Dynamic Task Streams. In M. Valenti, D. Reed, & M. Torres (Eds.), ICC 2024 - IEEE International Conference on Communications (pp. 3803–3808). IEEE. https://doi.org/10.1109/ICC51166.2024.10622590
    Projects: AloTwin (2023–2025) / INTEND (2024–2026)
  • Federated Learning for Internet of Things / Li, Y., Zhang, Q., Wang, X., Zeng, R., Li, H., Murturi, I., Dustdar, S., & Huang, M. (2024). Federated Learning for Internet of Things. In P. K. Donta, A. Hazra, & L. Loven (Eds.), Learning Techniques for the Internet of Things (pp. 33–55). Springer. https://doi.org/10.1007/978-3-031-50514-0_3
  • Intelligence Inference on IoT Devices / Zhang, Q., Li, Y., Zhang, D., Murturi, I., Casamayor Pujol, V., Dustdar, S., & Wang, S. (2024). Intelligence Inference on IoT Devices. In P. K. Donta, A. Hazra, & L. Loven (Eds.), Learning Techniques for the Internet of Things (pp. 171–195). Springer. https://doi.org/10.1007/978-3-031-50514-0_9

2023

2022

2021

  • On Provisioning Procedural Geometry Workloads on Edge Architectures / Murturi, I., Jia, C., Kerbl, B., Wimmer, M., Dustdar, S., & Tsigkanos, C. (2021). On Provisioning Procedural Geometry Workloads on Edge Architectures. In F. Dominguez Mayo, M. Marchiori, & J. Filipe (Eds.), Proceedings of the 17th International Conference on Web Information Systems and Technologies. SCITEPRESS. https://doi.org/10.5220/0010687800003058
    Projects: EDENSPACE (2019–2022) / FogProtect (2020–2022)
  • Towards IoT Processes on the Edge / Dustdar, S., & Murturi, I. (2021). Towards IoT Processes on the Edge. In M. Aiello, A. Bouguettaya, D. A. Tamburri, & W.-J. van den Heuvel (Eds.), Next-Gen Digital Services. A Retrospective and Roadmap for Service Computing of the Future (pp. 167–178). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-73203-5_13
  • Transforming the Method of Least Squares to the Dataflow Paradigm / Murturi, I. (2021). Transforming the Method of Least Squares to the Dataflow Paradigm. In V. Milutinovic & M. Kotlar (Eds.), Advances in Systems Analysis, Software Engineering, and High Performance Computing (pp. 114–121). IGI Global. https://doi.org/10.4018/978-1-7998-7156-9.ch008

2020

  • Towards Distributed Edge-based Systems / Dustdar, S., & Murturi, I. (2020). Towards Distributed Edge-based Systems. In 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI). IEEE 2nd International Conference on Cognitive Machine Intelligence (CogMI 2020) - Online Conference, Atlanta, United States of America (the). IEEE. https://doi.org/10.1109/cogmi50398.2020.00021
    Project: FogProtect (2020–2022)
  • A Decentralized Approach for Determining Configurator Placement in Dynamic Edge Networks / Murturi, I., Barzegaran, M., & Dustdar, S. (2020). A Decentralized Approach for Determining Configurator Placement in Dynamic Edge Networks. In 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI). IEEE 2nd International Conference on Cognitive Machine Intelligence (CogMI 2020) - Online Conference, Atlanta, United States of America (the). IEEE. https://doi.org/10.1109/cogmi50398.2020.00027
    Project: FORA (2017–2021)
  • A Goal-Driven Approach for Deploying Self-Adaptive IoT Systems / Alkhabbas, F., Murturi, I., Spalazzese, R., Davidsson, P., & Dustdar, S. (2020). A Goal-Driven Approach for Deploying Self-Adaptive IoT Systems. In 2020 IEEE International Conference on Software Architecture (ICSA). IEEE 17th International Conference on Software Architecture (ICSA 2020) - Online Conference, Salvador, Brazil. IEEE. https://doi.org/10.1109/icsa47634.2020.00022
  • Edge and Fog: A Survey, Use Cases, and Future Challenges / Avasalcai, C., Murturi, I., & Dustdar, S. (2020). Edge and Fog: A Survey, Use Cases, and Future Challenges. In A. Abbas, S. U. Khan, & A. Y. Zomaya (Eds.), Fog Computing: Theory and Practice (pp. 43–65). John Wiley & Sons, Inc. http://hdl.handle.net/20.500.12708/30294
    Project: FORA (2017–2021)

2019

  • Sabrina: Modeling and Visualization of Financial Data over Time with Incremental Domain Knowledge / Arleo, A., Tsigkanos, C., Jia, C., Leite, R. A., Murturi, I., Klaffenböck, M., Dustdar, S., Miksch, S., Wimmer, M., & Sorger, J. (2019). Sabrina: Modeling and Visualization of Financial Data over Time with Incremental Domain Knowledge. arXiv. https://doi.org/10.48550/arXiv.1908.07479
  • Sabrina: Modeling and Visualization of Financial Data over Time with Incremental Domain Knowledge / Arleo, A., Tsigkanos, C., Jia, C., Almeida Leite, R., Murturi, I., Klaffenböck, M., Dustdar, S., Miksch, S., Wimmer, M., & Sorger, J. (2019). Sabrina: Modeling and Visualization of Financial Data over Time with Incremental Domain Knowledge. In 2019 IEEE Visualization Conference (VIS). 2019 IEEE Visualization Conference (VIS), Vancouver, British Columbia, Canada. IEEE. https://doi.org/10.1109/visual.2019.8933598
  • Invited Paper: Edge and Fog Computing: Vision and Research Challenges / Dustdar, S., Avasalcai, C., & Murturi, I. (2019). Invited Paper: Edge and Fog Computing: Vision and Research Challenges. In 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). 13th IEEE International Conference on Service-Oriented System Engineering (SOSE 2019), San Francisco East Bay, California, United States of America (the). IEEE. https://doi.org/10.1109/sose.2019.00023
    Project: FORA (2017–2021)
  • Edge-to-Edge Resource Discovery using Metadata Replication / Murturi, I., Avasalcai, C., Tsigkanos, C., & Dustdar, S. (2019). Edge-to-Edge Resource Discovery using Metadata Replication. In 2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC). IEEE 3rd International Conference on Fog and Edge Computing (ICFEC 2019), Larnaca, Cyprus. IEEE. https://doi.org/10.1109/cfec.2019.8733149
    Project: FORA (2017–2021)
  • Dependable Resource Coordination on the Edge at Runtime (Invited paper) / Tsigkanos, C., Murturi, I., & Dustdar, S. (2019). Dependable Resource Coordination on the Edge at Runtime (Invited paper). Proceedings of the IEEE, 107(8), 1520–1536. https://doi.org/10.1109/jproc.2019.2917314

2018