Ilir Murturi
Projektass. Dr.techn. / MSc BSc
Role
-
PostDoc Researcher
Distributed Systems, E194-02
Publications
2024
-
A Privacy Enforcing Framework for Data Streams on the Edge
/
Sedlak, B., Murturi, I., Donta, P. K., & Dustdar, S. (2024). A Privacy Enforcing Framework for Data Streams on the Edge. IEEE Transactions on Emerging Topics in Computing, 12(3), 852–863. https://doi.org/10.1109/TETC.2023.3315131
Projects: AloTwin (2023–2025) / FogProtect (2020–2022) / TEADAL (2022–2025) - Distributed AI in Zero-Touch Provisioning for Edge Networks: Challenges and Research Directions / Hazra, A., Morichetta, A., Murturi, I., Lovén, L., Dehury, C. K., Casamayor Pujol, V., Donta, P. K., & Dustdar, S. (2024). Distributed AI in Zero-Touch Provisioning for Edge Networks: Challenges and Research Directions. Computer, 57(3), 69–78. https://doi.org/10.1109/MC.2023.3334913
-
Distributed Computing Continuum Systems: Emerging approaches for intelligent, self-adaptive and secure operation
/
Frangoudis, P., & Murturi, I. (2024, February 28). Distributed Computing Continuum Systems: Emerging approaches for intelligent, self-adaptive and secure operation [Presentation]. Tutorial at the University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia.
Project: AloTwin (2023–2025) -
Collaborative Inference in DNN-Based Satellite Systems with Dynamic Task Streams
/
Guan, J., Zhang, Q., Murturi, I., Donta, P. K., Dustdar, S., & Wang, S. (2024). Collaborative Inference in DNN-Based Satellite Systems with Dynamic Task Streams. In M. Valenti, D. Reed, & M. Torres (Eds.), ICC 2024 - IEEE International Conference on Communications (pp. 3803–3808). IEEE. https://doi.org/10.1109/ICC51166.2024.10622590
Projects: AloTwin (2023–2025) / INTEND (2024–2026) - Federated Learning for Internet of Things / Li, Y., Zhang, Q., Wang, X., Zeng, R., Li, H., Murturi, I., Dustdar, S., & Huang, M. (2024). Federated Learning for Internet of Things. In P. K. Donta, A. Hazra, & L. Loven (Eds.), Learning Techniques for the Internet of Things (pp. 33–55). Springer. https://doi.org/10.1007/978-3-031-50514-0_3
- Intelligence Inference on IoT Devices / Zhang, Q., Li, Y., Zhang, D., Murturi, I., Casamayor Pujol, V., Dustdar, S., & Wang, S. (2024). Intelligence Inference on IoT Devices. In P. K. Donta, A. Hazra, & L. Loven (Eds.), Learning Techniques for the Internet of Things (pp. 171–195). Springer. https://doi.org/10.1007/978-3-031-50514-0_9
2023
-
Blockchain-based Zero Trust on the Edge
/
Bicer, C., Murturi, I., Donta, P. K., & Dustdar, S. (2023). Blockchain-based Zero Trust on the Edge. arXiv. https://doi.org/10.34726/5941
Download: PDF (1.08 MB)
Projects: AloTwin (2023–2025) / TEADAL (2022–2025) -
Collaborative Inference in DNN-based Satellite Systems with Dynamic Task Streams
/
Guan, J., Zhang, Q., Murturi, I., Donta, P. K., Dustdar, S., & Wang, S. (2023). Collaborative Inference in DNN-based Satellite Systems with Dynamic Task Streams. arXiv. https://doi.org/10.34726/5942
Download: PDF (404 KB) -
Exploring the Potential of Distributed Computing Continuum Systems
/
Donta, P. K., Murturi, I., Casamayor Pujol, V., Sedlak, B., & Dustdar, S. (2023). Exploring the Potential of Distributed Computing Continuum Systems. Computers, 12(10), Article 198. https://doi.org/10.3390/computers12100198
Download: PDF (2.73 MB)
Projects: AloTwin (2023–2025) / TEADAL (2022–2025) - Learning‐driven ubiquitous mobile edge computing: Network management challenges for future generation Internet of Things / Donta, P. K., Monteiro, E., Dehury, C. K., & Murturi, I. (2023). Learning‐driven ubiquitous mobile edge computing: Network management challenges for future generation Internet of Things. International Journal of Network Management, 33(5), Article e2250. https://doi.org/10.1002/nem.2250
-
Stochastic Modeling for Intelligent Software-Defined Vehicular Networks: A Survey
/
Ravi, B., Varghese, B., Murturi, I., Donta, P. K., Dustdar, S., Dehury, C. K., & Srirama, S. N. (2023). Stochastic Modeling for Intelligent Software-Defined Vehicular Networks: A Survey. Computers, 12(8), Article 162. https://doi.org/10.3390/computers12080162
Download: PDF (825 KB) - Edge Intelligence—Research Opportunities for Distributed Computing Continuum Systems / Casamayor Pujol, V., Donta, P. K., Morichetta, A., Murturi, I., & Dustdar, S. (2023). Edge Intelligence—Research Opportunities for Distributed Computing Continuum Systems. IEEE Internet Computing, 27(4), 53–74. https://doi.org/10.1109/MIC.2023.3284693
-
Fundamental Research Challenges for Distributed Computing Continuum Systems
/
Casamayor Pujol, V., Morichetta, A., Murturi, I., Donta, P. K., & Dustdar, S. (2023). Fundamental Research Challenges for Distributed Computing Continuum Systems. Information, 14(3), Article 198. https://doi.org/10.3390/info14030198
Download: pdf (390 KB) -
Federated Domain Generalization: A Survey
/
Li, Y., Wang, X., Zeng, R., Donta, P. K., Murturi, I., Huang, M., & Dustdar, S. (2023). Federated Domain Generalization: A Survey. arXiv. https://doi.org/10.34726/5945
Download: PDF (3.63 MB)
Projects: INTEND (2024–2026) / TEADAL (2022–2025) - Distributed Computing Continuum Systems – Opportunities and Research Challenges / Casamayor Pujol, V., Donta, P. K., Morichetta, A., Murturi, I., & Dustdar, S. (2023). Distributed Computing Continuum Systems – Opportunities and Research Challenges. In J. Troya, R. MIRANDOLA, E. Navarro, A. Delgado, S. Segura, G. Ortiz, C. Pautasso, C. Zirpins, P. Fernandez, & A. Ruiz-Cortes (Eds.), Service-Oriented Computing – ICSOC 2022 Workshops (pp. 405–407). Springer Cham. https://doi.org/10.1007/978-3-031-26507-5_41
- Distributed AI in Zero-touch Provisioning for Edge Networks: Challenges and Research Directions / Hazra, A., Morichetta, A., Murturi, I., Loven, L., Dehury, C. K., Casamayor Pujol, V., Donta, P. K., & Dustdar, S. (2023). Distributed AI in Zero-touch Provisioning for Edge Networks: Challenges and Research Directions. arXiv. https://doi.org/10.48550/arXiv.2311.17471
-
A Comprehensive Performance Evaluation of Procedural Geometry Workloads on Resource-Constrained Devices
/
Govori, E., Murturi, I., & Dustdar, S. (2023). A Comprehensive Performance Evaluation of Procedural Geometry Workloads on Resource-Constrained Devices. In C. A. ARDAGNA, F. Awaysheh, H. Bian, C. K. Chang, R. N. Chang, F. Delicato, N. Desai, J. Fan, G. Fox, A. Goscinski, Z. Jin, A. Kobusinska, & O. Rana (Eds.), Proceedings 2023 IEEE International Conference on Edge Computing and Communications (EDGE) (pp. 271–279). IEEE. https://doi.org/10.1109/EDGE60047.2023.00049
Project: AloTwin (2023–2025) -
CommunityAI: Towards Community-based Federated Learning
/
Murturi, I., Donta, P. K., & Dustdar, S. (2023). CommunityAI: Towards Community-based Federated Learning. In Proceedings 2023 IEEE 5th International Conference on Cognitive Machine Intelligence (CogMI) (pp. 141–149). IEEE. https://doi.org/10.1109/CogMI58952.2023.00029
Projects: AloTwin (2023–2025) / TEADAL (2022–2025) -
Learning-driven Zero Trust in Distributed Computing Continuum Systems
/
Murturi, I., Donta, P. K., Casamayor Pujol, V., Morichetta, A., & Dustdar, S. (2023). Learning-driven Zero Trust in Distributed Computing Continuum Systems. arXiv. https://doi.org/10.48550/arXiv.2311.17447
Projects: AloTwin (2023–2025) / TEADAL (2022–2025) -
CommunityAI: Towards Community-based Federated Learning
/
Murturi, I., Donta, P. K., & Dustdar, S. (2023). CommunityAI: Towards Community-based Federated Learning. arXiv. https://doi.org/10.48550/arXiv.2311.17958
Projects: AloTwin (2023–2025) / TEADAL (2022–2025) -
Learning-Driven Zero Trust in Distributed Computing Continuum Systems
/
Murturi, I., Donta, P. K., Casamayor Pujol, V., Morichetta, A., & Dustdar, S. (2023). Learning-Driven Zero Trust in Distributed Computing Continuum Systems. In 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 0044–0049). IEEE. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361352
Projects: AloTwin (2023–2025) / TEADAL (2022–2025)
2022
-
DECENT: A Decentralized Configurator for Controlling Elasticity in Dynamic Edge Networks
/
Murturi, I., & Dustdar, S. (2022). DECENT: A Decentralized Configurator for Controlling Elasticity in Dynamic Edge Networks. ACM Transactions on Internet Technology, 22(3), 1–21. https://doi.org/10.1145/3530692
Download: PDF (1.44 MB)
Project: FogProtect (2020–2022) -
Specification and Operation of Privacy Models for Data Streams on the Edge
/
Sedlak, B., Murturi, I., & Dustdar, S. (2022). Specification and Operation of Privacy Models for Data Streams on the Edge. In L. Mashayekhy, S. Schulte, V. Cardellini, B. Kantarci, Y. Simmhan, & B. Varghese (Eds.), 2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC). IEEE. https://doi.org/10.1109/icfec54809.2022.00018
Project: FogProtect (2020–2022) -
Resource management and elasticity control in edge networks
/
Murturi, I. (2022). Resource management and elasticity control in edge networks [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2022.106981
Download: PDF (3.38 MB) -
A Decentralized Approach for Resource Discovery using Metadata Replication in Edge Networks
/
Murturi, I., & Dustdar, S. (2022). A Decentralized Approach for Resource Discovery using Metadata Replication in Edge Networks. IEEE Transactions on Services Computing, 15(5), 2526–2537. https://doi.org/10.1109/TSC.2021.3082305
Project: FogProtect (2020–2022) -
Utilizing AI Planning on the Edge
/
Murturi, I., Egyed, A., & Dustdar, S. (2022). Utilizing AI Planning on the Edge. IEEE Internet Computing, 26(2), 28–35. https://doi.org/10.1109/mic.2021.3073434
Project: FogProtect (2020–2022)
2021
-
On Provisioning Procedural Geometry Workloads on Edge Architectures
/
Murturi, I., Jia, C., Kerbl, B., Wimmer, M., Dustdar, S., & Tsigkanos, C. (2021). On Provisioning Procedural Geometry Workloads on Edge Architectures. In F. Dominguez Mayo, M. Marchiori, & J. Filipe (Eds.), Proceedings of the 17th International Conference on Web Information Systems and Technologies. SCITEPRESS. https://doi.org/10.5220/0010687800003058
Projects: EDENSPACE (2019–2022) / FogProtect (2020–2022) - Towards IoT Processes on the Edge / Dustdar, S., & Murturi, I. (2021). Towards IoT Processes on the Edge. In M. Aiello, A. Bouguettaya, D. A. Tamburri, & W.-J. van den Heuvel (Eds.), Next-Gen Digital Services. A Retrospective and Roadmap for Service Computing of the Future (pp. 167–178). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-73203-5_13
- Transforming the Method of Least Squares to the Dataflow Paradigm / Murturi, I. (2021). Transforming the Method of Least Squares to the Dataflow Paradigm. In V. Milutinovic & M. Kotlar (Eds.), Advances in Systems Analysis, Software Engineering, and High Performance Computing (pp. 114–121). IGI Global. https://doi.org/10.4018/978-1-7998-7156-9.ch008
2020
-
Towards Distributed Edge-based Systems
/
Dustdar, S., & Murturi, I. (2020). Towards Distributed Edge-based Systems. In 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI). IEEE 2nd International Conference on Cognitive Machine Intelligence (CogMI 2020) - Online Conference, Atlanta, United States of America (the). IEEE. https://doi.org/10.1109/cogmi50398.2020.00021
Project: FogProtect (2020–2022) -
A Decentralized Approach for Determining Configurator Placement in Dynamic Edge Networks
/
Murturi, I., Barzegaran, M., & Dustdar, S. (2020). A Decentralized Approach for Determining Configurator Placement in Dynamic Edge Networks. In 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI). IEEE 2nd International Conference on Cognitive Machine Intelligence (CogMI 2020) - Online Conference, Atlanta, United States of America (the). IEEE. https://doi.org/10.1109/cogmi50398.2020.00027
Project: FORA (2017–2021) - A Goal-Driven Approach for Deploying Self-Adaptive IoT Systems / Alkhabbas, F., Murturi, I., Spalazzese, R., Davidsson, P., & Dustdar, S. (2020). A Goal-Driven Approach for Deploying Self-Adaptive IoT Systems. In 2020 IEEE International Conference on Software Architecture (ICSA). IEEE 17th International Conference on Software Architecture (ICSA 2020) - Online Conference, Salvador, Brazil. IEEE. https://doi.org/10.1109/icsa47634.2020.00022
-
Edge and Fog: A Survey, Use Cases, and Future Challenges
/
Avasalcai, C., Murturi, I., & Dustdar, S. (2020). Edge and Fog: A Survey, Use Cases, and Future Challenges. In A. Abbas, S. U. Khan, & A. Y. Zomaya (Eds.), Fog Computing: Theory and Practice (pp. 43–65). John Wiley & Sons, Inc. http://hdl.handle.net/20.500.12708/30294
Project: FORA (2017–2021)
2019
- Sabrina: Modeling and Visualization of Financial Data over Time with Incremental Domain Knowledge / Arleo, A., Tsigkanos, C., Jia, C., Leite, R. A., Murturi, I., Klaffenböck, M., Dustdar, S., Miksch, S., Wimmer, M., & Sorger, J. (2019). Sabrina: Modeling and Visualization of Financial Data over Time with Incremental Domain Knowledge. arXiv. https://doi.org/10.48550/arXiv.1908.07479
- Sabrina: Modeling and Visualization of Financial Data over Time with Incremental Domain Knowledge / Arleo, A., Tsigkanos, C., Jia, C., Almeida Leite, R., Murturi, I., Klaffenböck, M., Dustdar, S., Miksch, S., Wimmer, M., & Sorger, J. (2019). Sabrina: Modeling and Visualization of Financial Data over Time with Incremental Domain Knowledge. In 2019 IEEE Visualization Conference (VIS). 2019 IEEE Visualization Conference (VIS), Vancouver, British Columbia, Canada. IEEE. https://doi.org/10.1109/visual.2019.8933598
-
Invited Paper: Edge and Fog Computing: Vision and Research Challenges
/
Dustdar, S., Avasalcai, C., & Murturi, I. (2019). Invited Paper: Edge and Fog Computing: Vision and Research Challenges. In 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). 13th IEEE International Conference on Service-Oriented System Engineering (SOSE 2019), San Francisco East Bay, California, United States of America (the). IEEE. https://doi.org/10.1109/sose.2019.00023
Project: FORA (2017–2021) -
Edge-to-Edge Resource Discovery using Metadata Replication
/
Murturi, I., Avasalcai, C., Tsigkanos, C., & Dustdar, S. (2019). Edge-to-Edge Resource Discovery using Metadata Replication. In 2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC). IEEE 3rd International Conference on Fog and Edge Computing (ICFEC 2019), Larnaca, Cyprus. IEEE. https://doi.org/10.1109/cfec.2019.8733149
Project: FORA (2017–2021) - Dependable Resource Coordination on the Edge at Runtime (Invited paper) / Tsigkanos, C., Murturi, I., & Dustdar, S. (2019). Dependable Resource Coordination on the Edge at Runtime (Invited paper). Proceedings of the IEEE, 107(8), 1520–1536. https://doi.org/10.1109/jproc.2019.2917314
2018
-
An efficient approach to monitoring environmental conditions using a wireless sensor network and NodeMCU
/
Bajrami, X., & Murturi, I. (2018). An efficient approach to monitoring environmental conditions using a wireless sensor network and NodeMCU. Elektrotechnik Und Informationstechnik : E & i. https://doi.org/10.1007/s00502-018-0612-9
Download: PDF (2.18 MB)
Supervisions
-
McEdgechain: A lightweight blockchain ledger built upon a mission critical edge system
/
Csörgö, S. (2023). McEdgechain: A lightweight blockchain ledger built upon a mission critical edge system [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.74500
Download: PDF (951 KB) -
Design and implementation of a blockchain-based zero trust architecture on the edge
/
Bicer, C. (2023). Design and implementation of a blockchain-based zero trust architecture on the edge [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.102641
Download: PDF (1.42 MB) -
Specification and operation of privacy models for data streams on the edge
/
Sedlak, B. A. (2022). Specification and operation of privacy models for data streams on the edge [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2022.96247
Download: PDF (2.74 MB)