TU Wien Informatics

Role

  • A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive Coding Networks / Tommaso Salvatori, Song, Y., Yordanov, Y., Millidge, B., Sha, L., Emde, C., Xu, Z., Bogacz, R., & Thomas Lukasiewicz. (2024). A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive Coding Networks. In The Twelfth International Conference on Learning Representations (p. 25). http://hdl.handle.net/20.500.12708/211106
  • Predictive Coding beyond Correlations / Salvatori, T., Pinchetti, L., M’Charrak, A., Millidge, B., & Lukasiewicz, T. (2024). Predictive Coding beyond Correlations. In Forty-first International Conference on Machine Learning. Forty-first International Conference on Machine Learning, ICML 2024, Wien, Austria. http://hdl.handle.net/20.500.12708/210295
  • Inferring neural activity before plasticity as a foundation for learning beyond backpropagation / Song, Y., Millidge, B., Salvatori, T., Lukasiewicz, T., Xu, Z., & Bogacz, R. (2024). Inferring neural activity before plasticity as a foundation for learning beyond backpropagation. Nature Neuroscience. https://doi.org/10.1038/s41593-023-01514-1
    Download: Article (6.58 MB)
  • Recurrent predictive coding models for associative memory employing covariance learning / Tang, M., Salvatori, T., Millidge, B., Song, Y., Lukasiewicz, T., & Bogacz, R. (2023). Recurrent predictive coding models for associative memory employing covariance learning. PLoS Computational Biology, 19(4), e1010719. https://doi.org/10.1371/journal.pcbi.1010719
  • Mathematical Capabilities of ChatGPT / Frieder, S., Pinchetti, L., Chevalier, A., Griffiths, R.-R., Salvatori, T., Lukasiewicz, T., Petersen, P., & Berner, J. (2023). Mathematical Capabilities of ChatGPT. In Advances in Neural Information Processing Systems 36 pre-proceedings (NeurIPS 2023). 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, United States of America (the). http://hdl.handle.net/20.500.12708/194133
  • Associative Memories in the Feature Space / Salvatori, T., Millidge, B., Song, Y., Bogacz, R., & Lukasiewicz, T. (2023). Associative Memories in the Feature Space. In K. Gal, A. Nowé, & G. J. Nalepa (Eds.), 26th European Conference on Artificial Intelligence, September 30–October 4, 2023, Kraków, Poland – Including 12th Conference on Prestigious Applications of Intelligent Systems (PAIS 2023) (pp. 2065–2072). IOS Press. https://doi.org/10.3233/FAIA230500
  • Backpropagation at the Infinitesimal Inference Limit of Energy-Based Models: Unifying Predictive Coding, Equilibrium Propagation, and Contrastive Hebbian Learning / Millidge, B., Song, Y., Salvatori, T., Lukasiewicz, T., & Bogacz, R. (2023). Backpropagation at the Infinitesimal Inference Limit of Energy-Based Models: Unifying Predictive Coding, Equilibrium Propagation, and Contrastive Hebbian Learning. In The Eleventh International Conference on Learning Representations, ICLR 2023 (pp. 1–14). http://hdl.handle.net/20.500.12708/192480
  • A Theoretical Framework for Inference and Learning in Predictive Coding Networks / Millidge, B., Song, Y., Salvatori, T., Lukasiewicz, T., & Bogacz, R. (2023). A Theoretical Framework for Inference and Learning in Predictive Coding Networks. In The Eleventh International Conference on Learning Representations, ICLR 2023 (pp. 1–24). http://hdl.handle.net/20.500.12708/192478
  • Predictive Coding: Towards a Future of Deep Learning beyond Backpropagation? / Millidge, B., Salvatori, T., Song, Y., Bogacz, R., & Lukasiewicz, T. (2022). Predictive Coding: Towards a Future of Deep Learning beyond Backpropagation? In L. De Raedt (Ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (pp. 5538–5545). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2022/774
  • Universal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models / Millidge, B., Salvatori, T., Song, Y., Lukasiewicz, T., & Bogacz, R. (2022). Universal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models. In Proceedings of the 39th International Conference on Machine Learning (pp. 15561–15583). http://hdl.handle.net/20.500.12708/192477
  • Predictive Coding beyond Gaussian Distributions / Pinchetti, L., Salvatori, T., Yordanov, Y., Millidge, B., Song, Y., & Lukasiewicz, T. (2022). Predictive Coding beyond Gaussian Distributions. In S. Koyejo, S. Mohamed, & A. Agarwal (Eds.), Advances in Neural Information Processing Systems 35 (NeurIPS 2022) (pp. 1280–1293). http://hdl.handle.net/20.500.12708/192691
  • Learning on Arbitrary Graph Topologies via Predictive Coding / Salvatori, T., Pinchetti, L., Millidge, B., Song, Y., Bao, T., Bogacz, R., & Lukasiewicz, T. (2022). Learning on Arbitrary Graph Topologies via Predictive Coding. In Advances in Neural Information Processing Systems 35 (NeurIPS 2022) (pp. 38232–38244). Neural information processing systems foundation. http://hdl.handle.net/20.500.12708/192475