TU Wien Informatics

Thomas Lukasiewicz

Univ.Prof. Dipl.-Inf. Dr.rer.nat.

Research Focus

Research Areas

  • Artificial Intelligence, Machine Learning, Computer Vision, Natural Language Processing

About

Our research aims at enabling machines to mimic human-like intelligence, via models and algorithms to process vast amounts of data, recognize patterns, and make decisions, using techniques from machine and deep learning as well as symbolic reasoning.

In our research activities, we cover all modalities, including natural language processing and computer vision. We focus especially on (i) explainable AI, (ii) deep learning with logical constraints for safe AI , (iii) hybrid model-based approaches to explainable, fair, and robust AI, (iv) general AI via predictive coding and active inference, and (v) intelligent applications, such as in healthcare and law.

Roles

2025

2024

2023

2022

  • BECEL: Benchmark for Consistency Evaluation of Language Models / Jang, M., Kwon, D. S., & Lukasiewicz, T. (2022). BECEL: Benchmark for Consistency Evaluation of Language Models. In N. Calzolari, C.-R. Huang, & H. Kim (Eds.), Proceedings of the 29th International Conference on Computational Linguistics (pp. 3680–3696). International Committee on Computational Linguistics. http://hdl.handle.net/20.500.12708/192675
  • Clustering Generative Adversarial Networks for Story Visualization / Li, B., Torr, P. H. S., & Lukasiewicz, T. (2022). Clustering Generative Adversarial Networks for Story Visualization. In MM ’22: Proceedings of the 30th ACM International Conference on Multimedia (pp. 769–778). Association for Computing Machinery. https://doi.org/10.1145/3503161.3548034
  • Explaining Chest X-Ray Pathologies in Natural Language / Kayser, M., Emde, C., Camburu, O.-M., Parsons, G., Papiez, B., & Lukasiewicz, T. (2022). Explaining Chest X-Ray Pathologies in Natural Language. In L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, & S. Li (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (pp. 701–713). https://doi.org/10.1007/978-3-031-16443-9_67
  • NoiER: An Approach for Training more Reliable Fine-Tuned Downstream Task Models / Jang, M., & Thomas Lukasiewicz. (2022). NoiER: An Approach for Training more Reliable Fine-Tuned Downstream Task Models. IEEE/ACM Transactions on Audio, Speech and Language Processing, 30, 2514–2525. https://doi.org/10.1109/TASLP.2022.3193292
  • NP-Match: When Neural Processes meet Semi-Supervised Learning / Wang, J., Lukasiewicz, T., Massiceti, D., Hu, X., Pavlovic, V., & Neophytou, A. (2022). NP-Match: When Neural Processes meet Semi-Supervised Learning. In Proceedings of the 39th International Conference on Machine Learning (pp. 22919–22934). PMLR. http://hdl.handle.net/20.500.12708/192517
  • Knowledge-Grounded Self-Rationalization via Extractive and Natural Language Explanations / Majumder, B. P., Camburu, O.-M., Lukasiewicz, T., & McAuley, J. (2022). Knowledge-Grounded Self-Rationalization via Extractive and Natural Language Explanations. In K. Chaudhuri, S. Jegelka, & L. Song (Eds.), Proceedings of the 39th International Conference on Machine Learning (pp. 14786–14801). MLResearch Press. http://hdl.handle.net/20.500.12708/192473
  • Explanations for Negative Query Answers under Inconsistency-Tolerant Semantics / Lukasiewicz, T., Malizia, E., & Molinaro, C. (2022). Explanations for Negative Query Answers under Inconsistency-Tolerant Semantics. In L. De Raedt (Ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (pp. 2705–2711). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2022/375
  • Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations in a Label-Abundant Setup / Yordanov, Y., Kocijan, V., Lukasiewicz, T., & Camburu, O.-M. (2022). Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations in a Label-Abundant Setup. In Y. Goldberg, K. Zornitsa, & Y. Zhang (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2022 (pp. 3486–3501). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.findings-emnlp.255
  • Image-to-Image Translation with Text Guidance / Li, B., Torr, P. H. S., & Lukasiewicz, T. (2022). Image-to-Image Translation with Text Guidance. In The 33rd British Machine Vision Conference Proceedings (pp. 1–14). http://hdl.handle.net/20.500.12708/193629
  • Deep Learning with Logical Constraints / Giunchiglia, E., Stoian, M. C., & Lukasiewicz, T. (2022). Deep Learning with Logical Constraints. In L. De Raedt (Ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (pp. 5478–5485). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2022/767
  • Syntactically Rich Discriminative Training: An Effective Method for Open Information Extraction / Mtumbuka, F., & Lukasiewicz, T. (2022). Syntactically Rich Discriminative Training: An Effective Method for Open Information Extraction. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 5972–5987). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.emnlp-main.401
    Download: PDF (397 KB)
  • Memory-Driven Text-to-Image Generation / Li, B., Torr, P. H. S., & Lukasiewicz, T. (2022). Memory-Driven Text-to-Image Generation. In The 33rd British Machine Vision Conference Proceedings. 33rd British Machine Vision Conference, London, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/193654
  • Learning to Model Multimodal Semantic Alignment for Story Visualization / Li, B., & Lukasiewicz, T. (2022). Learning to Model Multimodal Semantic Alignment for Story Visualization. In Findings of the Association for Computational Linguistics: EMNLP 2022 (pp. 4741–4747). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.findings-emnlp.346
    Download: PDF (2.68 MB)
  • Predictive Coding: Towards a Future of Deep Learning beyond Backpropagation? / Millidge, B., Salvatori, T., Song, Y., Bogacz, R., & Lukasiewicz, T. (2022). Predictive Coding: Towards a Future of Deep Learning beyond Backpropagation? In L. De Raedt (Ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (pp. 5538–5545). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2022/774
  • Universal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models / Millidge, B., Salvatori, T., Song, Y., Lukasiewicz, T., & Bogacz, R. (2022). Universal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models. In Proceedings of the 39th International Conference on Machine Learning (pp. 15561–15583). http://hdl.handle.net/20.500.12708/192477
  • (Non-)Convergence Results for Predictive Coding Networks / Frieder, S., & Lukasiewicz, T. (2022). (Non-)Convergence Results for Predictive Coding Networks. In Proceedings of the 39th International Conference on Machine Learning (pp. 6793–6810). http://hdl.handle.net/20.500.12708/187543
  • Predictive Coding beyond Gaussian Distributions / Pinchetti, L., Salvatori, T., Yordanov, Y., Millidge, B., Song, Y., & Lukasiewicz, T. (2022). Predictive Coding beyond Gaussian Distributions. In S. Koyejo, S. Mohamed, & A. Agarwal (Eds.), Advances in Neural Information Processing Systems 35 (NeurIPS 2022) (pp. 1280–1293). http://hdl.handle.net/20.500.12708/192691
  • Democratizing Financial Knowledge Graph Construction by Mining Massive Brokerage Research Reports / Cheng, Z., Wu, L., Thomas Lukasiewicz, Emanuel Sallinger, & Georg Gottlob. (2022). Democratizing Financial Knowledge Graph Construction by Mining Massive Brokerage Research Reports. In M. Ramanath & T. Palpanas (Eds.), Proceedings of the Workshops of the EDBT/ICDT 2022 Joint Conference. http://hdl.handle.net/20.500.12708/192765
  • Learning on Arbitrary Graph Topologies via Predictive Coding / Salvatori, T., Pinchetti, L., Millidge, B., Song, Y., Bao, T., Bogacz, R., & Lukasiewicz, T. (2022). Learning on Arbitrary Graph Topologies via Predictive Coding. In Advances in Neural Information Processing Systems 35 (NeurIPS 2022) (pp. 38232–38244). Neural information processing systems foundation. http://hdl.handle.net/20.500.12708/192475
  • Beyond Distributional Hypothesis: Let Language Models Learn Meaning-Text Correspondence / Jang, M., Mtumbuka, F., & Lukasiewicz, T. (2022). Beyond Distributional Hypothesis: Let Language Models Learn Meaning-Text Correspondence. In Findings of the Association for Computational Linguistics: NAACL 2022 (pp. 2030–2042). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.findings-naacl.156

2016

  • Generalized Consistent Query Answering under Existential Rules / Eiter, T., Lukasiewicz, T., & Predoiu, L. (2016). Generalized Consistent Query Answering under Existential Rules. In J. P. Delgrande & F. Wolter (Eds.), Proceedings, Fifteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2016) (pp. 359–368). http://hdl.handle.net/20.500.12708/56833

2015

  • From Classical to Consistent Query Answering under Existential Rules / Lukasiewicz, T., Martinez, M. V., Pieris, A., & Simari, G. I. (2015). From Classical to Consistent Query Answering under Existential Rules. In Proceedings of the 9th Alberto Mendelzon International Workshop on Foundations of Data Management, Lima, Peru, May 6 - 8, 2015 (p. 6). CEUR Workshop Proceedings. http://hdl.handle.net/20.500.12708/56409
    Project: START (2014–2022)
  • From Classical to Consistent Query Answering under Existential Rules / Lukasiewicz, T., Martinez, M. V., Pieris, A., & Simari, G. I. (2015). From Classical to Consistent Query Answering under Existential Rules. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 1546–1552). AAAI Press. http://hdl.handle.net/20.500.12708/56408
    Project: START (2014–2022)

2012

2011

2010

  • Tightly coupled fuzzy description logic programs under the answer set semantics for the Semantic Web / Lukasiewicz, T., & Straccia, U. (2010). Tightly coupled fuzzy description logic programs under the answer set semantics for the Semantic Web. In M. Lytras & A. Sheth (Eds.), Progressive Concepts for Semantic Web Evolution: Applications and Developments (pp. 237–256). Information Science Reference. https://doi.org/10.4018/978-1-60566-992-2.ch011
  • A novel combination of answer set programming with description logics for the Semantic Web / Lukasiewicz, T. (2010). A novel combination of answer set programming with description logics for the Semantic Web. IEEE Transactions on Knowledge and Data Engineering, 22(11), 1577–1592. https://doi.org/10.1109/tkde.2010.111
  • Datalog+/-: A Family of Logical Knowledge Representation and Query Languages for New Applications / Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., & Pieris, A. (2010). Datalog+/-: A Family of Logical Knowledge Representation and Query Languages for New Applications. In J.-P. Jouannaud (Ed.), 2010 25th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society. https://doi.org/10.1109/lics.2010.27
  • Ontological reasoning with F-Logic Lite and its extensions / Cali, A., Gottlob, G., Kifer, M., Lukasiewicz, T., & Pieris, A. (2010). Ontological reasoning with F-Logic Lite and its extensions. In M. Fox & D. Poole (Eds.), Proceedings of the 24th National Conference on Artificial Intelligence (AAAI 2010) (pp. 1660–1665). AAAI Press. http://hdl.handle.net/20.500.12708/53559
  • Datalog extensions for tractable query answering over ontologies / Cali, A., Gottlob, G., & Lukasiewicz, T. (2010). Datalog extensions for tractable query answering over ontologies. In R. De Virgilio, F. Giunchiglia, & L. Tanca (Eds.), Semantic Web Information Management: A Model-Based Perspective (pp. 249–279). Springer. http://hdl.handle.net/20.500.12708/27045
  • Redundancy Elimination on RDF Graphs in the Presence of Rules, Constraints, and Queries / Pichler, R., Polleres, A., Skritek, S., & Woltran, S. (2010). Redundancy Elimination on RDF Graphs in the Presence of Rules, Constraints, and Queries. In P. Hitzler & T. Lukasiewicz (Eds.), Web Reasoning and Rule Systems (pp. 133–148). Lecture Notes/ Springer. https://doi.org/10.1007/978-3-642-15918-3_11
  • Semantic search on the Web / Fazzinga, B., & Lukasiewicz, T. (2010). Semantic search on the Web. Semantic Web: Interoperability, Usability, Applicability, 1(1/2), 89–96. http://hdl.handle.net/20.500.12708/167954
  • Semantic Web search based on ontological conjunctive queries / Fazzinga, B., Gianforme, G., Gottlob, G., & Lukasiewicz, T. (2010). Semantic Web search based on ontological conjunctive queries. In S. Link & H. Prade (Eds.), Foundations of Information and Knowledge Systems (pp. 153–172). Springer LNCS. https://doi.org/10.1007/978-3-642-11829-6_12
  • Combining Semantic Web search with the power of inductive reasoning / d´Amato, C., Fanizzi, N., Fazzinga, B., Gottlob, G., & Lukasiewicz, T. (2010). Combining Semantic Web search with the power of inductive reasoning. In A. Deshpande & A. Hunter (Eds.), Scalable Uncertainty Management (pp. 137–150). Springer LNCS. https://doi.org/10.1007/978-3-642-15951-0_17
  • Inductive reasoning and semantic web search / d’Amato, C., Esposito, F., Fanizzi, N., Fazzinga, B., Gottlob, G., & Lukasiewicz, T. (2010). Inductive reasoning and semantic web search. In S. Shin, S. Ossowski, M. Schumacher, M. J. Palakal, & C.-C. Hung (Eds.), Proceedings of the 2010 ACM Symposium on Applied Computing - SAC ’10. ACM. https://doi.org/10.1145/1774088.1774397
  • Proceedings of the 6th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2010) / Proceedings of the 6th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2010). (2010). In F. Bobillo, R. Carvalho, P. C. G. da Costa, C. d´Amato, N. Fanizzi, K. B. Laskey, K. J. Laskey, T. Lukasiewicz, T. Martin, M. Nickles, & M. Pool (Eds.), CEUR Workshop Proceedings. CEUR-Proceedings. http://hdl.handle.net/20.500.12708/23242
  • Proceedings of the 1st International Workshop on Uncertainty in Description Logics (UniDL 2010) / Proceedings of the 1st International Workshop on Uncertainty in Description Logics (UniDL 2010). (2010). In T. Lukasiewicz, R. Penaloza, & A.-Y. Turhan (Eds.), CEUR Workshop Proceedings. CEUR-Proceedings. http://hdl.handle.net/20.500.12708/23206

2009

  • Datalog±: A Unified Approach to Ontologies and Integrity Constraints / Cali, A., Gottlob, G., & Lukasiewicz, T. (2009). Datalog±: A Unified Approach to Ontologies and Integrity Constraints. In V. De Antonellis, S. Castano, B. Catania, & G. Guerrini (Eds.), Proceedings of the 17th Italian Symposium on Advanced Database Systems (SEBD 2009) (pp. 5–6). Seneca Edizioni. http://hdl.handle.net/20.500.12708/53031
  • Uncertainty in the Semantic Web / Lukasiewicz, T. (2009). Uncertainty in the Semantic Web. In L. Godo & A. Pugliese (Eds.), Scalable Uncertainty Management (pp. 2–11). Springer Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-642-04388-8_2
  • Reasoning about Actions with Sensing under Qualitative and Probabilistic Uncertainty / Iocchi, L., Lukasiewicz, T., Nardi, D., & Rosati, R. (2009). Reasoning about Actions with Sensing under Qualitative and Probabilistic Uncertainty. ACM Transactions on Computational Logic, 10(1), 1–41. https://doi.org/10.1145/1459010.1459015
  • Description Logic Programs under Probabilistic Uncertainty and Fuzzy Vagueness / Lukasiewicz, T., & Straccia, U. (2009). Description Logic Programs under Probabilistic Uncertainty and Fuzzy Vagueness. International Journal of Approximate Reasoning: Uncertainty in Intelligent Systems, 50(6), 837–853. https://doi.org/10.1016/j.ijar.2009.03.004
  • Hybrid Reasoning with Rules and Ontologies / Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., & Maluszynski, J. (2009). Hybrid Reasoning with Rules and Ontologies. In F. Bry & J. Maluszynski (Eds.), Semantic Techniques for the Web (pp. 1–49). Springer. https://doi.org/10.1007/978-3-642-04581-3_1
    Projects: HEX-Programme (2008–2012) / Hybride Wissensbasen (2008–2012) / IncMan (2009–2012)
  • Uncertainty Reasoning for the Semantic Web / Lukasiewicz, T. (2009). Uncertainty Reasoning for the Semantic Web. In A. F. Polleres & T. Swift (Eds.), Web Reasoning and Rule Systems (pp. 26–39). Springer Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-642-05082-4_3
  • Tightly Coupled Probabilistic Description Logic Programs for the Semantic Web / Cali, A., Lukasiewicz, T., Predoiu, L., & Stuckenschmidt, H. (2009). Tightly Coupled Probabilistic Description Logic Programs for the Semantic Web. Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-642-00685-2
  • Combining Semantic Web Search with the Power of Inductive Reasoning / d´Amato, C., Fanizzi, N., Fazzinga, B., Gottlob, G., & Lukasiewicz, T. (2009). Combining Semantic Web Search with the Power of Inductive Reasoning. In F. Bobillo, P. C. G. da Costa, C. d´Amato, N. Fanizzi, K. B. Laskey, K. J. Laskey, T. Lukasiewicz, T. Martin, M. Nickles, M. Pool, & P. Smrz (Eds.), Proceedings of the Fifth International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2009) (pp. 15–26). CEUR-Proceedings. http://hdl.handle.net/20.500.12708/53024
  • Inductive Query Answering and Concept Retrieval Exploiting Local Models / d’Amato, C., Fanizzi, N., Esposito, F., & Lukasiewicz, T. (2009). Inductive Query Answering and Concept Retrieval Exploiting Local Models. In B. Lazzerini, L. Jain, A. Abraham, F. Marcelloni, F. Herrera, & V. Loia (Eds.), 2009 Ninth International Conference on Intelligent Systems Design and Applications. IEEE Computer Society. https://doi.org/10.1109/isda.2009.34
  • Approximate Classification of Semantically Annotated Web Resources Exploiting Pseudo-metrics Induced by Local Models / d´Amato, C., Fanizzi, N., Esposito, F., & Lukasiewicz, T. (2009). Approximate Classification of Semantically Annotated Web Resources Exploiting Pseudo-metrics Induced by Local Models. In R. Baeza-Yates, B. Berendt, E. Bertino, E.-P. Lim, & G. Pasi (Eds.), Proceedings of the 2009 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2009) (pp. 689–692). IEEE Computer Society. http://hdl.handle.net/20.500.12708/53042
  • Combining Boolean Games with the Power of Ontologies for Automated Multi-Attribute Negotiation in the Semantic Web / Lukasiewicz, T., & Ragone, A. (2009). Combining Boolean Games with the Power of Ontologies for Automated Multi-Attribute Negotiation in the Semantic Web. In R. Baeza-Yates, J. Lang, S. Mitra, S. Parsons, & G. Pasi (Eds.), Proceedings of the 2009 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2009) (pp. 395–402). IEEE. http://hdl.handle.net/20.500.12708/53041
  • A Combination of Boolean Games with Description Logics for Automated Multi-Attribute Negotiation / Lukasiewicz, T., & Ragone, A. (2009). A Combination of Boolean Games with Description Logics for Automated Multi-Attribute Negotiation. In B. Cuenca Grau, I. Horrocks, B. Motik, & U. Sattler (Eds.), Proceedings of the 22nd International Workshop on Description Logics (DL 2009) (pp. 47:1-47:12). CEUR workshop proceedings. http://hdl.handle.net/20.500.12708/53040
  • Tractable Query Answering over Ontologies with Datalog+- / Cali, A., Gottlob, G., & Lukasiewicz, T. (2009). Tractable Query Answering over Ontologies with Datalog+-. In B. Cuenca Grau, I. Horrocks, B. Motik, & U. Sattler (Eds.), Proceedings of the 22nd International Workshop on Description Logics (DL 2009) (pp. 46:1-46:12). CEUR workshop proceedings. http://hdl.handle.net/20.500.12708/53039
  • A general datalog-based framework for tractable query answering over ontologies / Calì, A., Gottlob, G., & Lukasiewicz, T. (2009). A general datalog-based framework for tractable query answering over ontologies. In J. Paredaens & S. Jianwen (Eds.), Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems - PODS ’09. ACM Press. https://doi.org/10.1145/1559795.1559809
  • A General Datalog-Based Framework for Tractable Query Answering over Ontologies / Cali, A., Gottlob, G., & Lukasiewicz, T. (2009). A General Datalog-Based Framework for Tractable Query Answering over Ontologies. In V. De Antonellis, S. Castano, B. Catania, & G. Guerrini (Eds.), Proceedings of the 17th Italian Symposium on Advanced Database Systems (SEBD 2009) (pp. 29–36). Seneca Edizioni. http://hdl.handle.net/20.500.12708/53032
  • Datalog±: A Unified Approach to Ontologies and Integrity Constraints / Cali, A., Gottlob, G., & Lukasiewicz, T. (2009). Datalog±: A Unified Approach to Ontologies and Integrity Constraints. In R. Fagin (Ed.), Proceedings of the 12th International Conference on Database Theory (ICDT 2009) (pp. 14–30). ACM International Conference Proceeding Series. http://hdl.handle.net/20.500.12708/53030
  • Well-Founded Semantics for Description Logic Programs in the Semantic Web / Eiter, T., Ianni, G., Lukasiewicz, T., & Schindlauer, R. (2009). Well-Founded Semantics for Description Logic Programs in the Semantic Web (INFSYS RR 1843-09-01). http://hdl.handle.net/20.500.12708/36178
    Projects: HEX-Programme (2008–2012) / Hybride Wissensbasen (2008–2012)
  • Proceedings of the Fifth International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2009) / Proceedings of the Fifth International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2009). (2009). In F. Bobillo, P. C. G. da Costa, C. d´Amato, N. Fanizzi, K. B. Laskey, K. J. Laskey, T. Lukasiewicz, T. Martin, M. Nickles, M. Pool, & P. Smrz (Eds.), CEUR Workshop Proceedings. CEUR-Proceedings. http://hdl.handle.net/20.500.12708/23033

2008

2007

2006

  • Causes and Explanations in the Structural-Model Approach: Tractable Cases / Eiter, T., & Lukasiewicz, T. (2006). Causes and Explanations in the Structural-Model Approach: Tractable Cases. Artificial Intelligence, 170(6–7), 542–580. http://hdl.handle.net/20.500.12708/173415
  • An Approach to Probabilistic Data Integration for the Semantic Web / Cali, A., & Lukasiewicz, T. (2006). An Approach to Probabilistic Data Integration for the Semantic Web. In P. C. G. da Costa, K. B. Laskey, K. J. Laskey, F. Fung, & M. Pool (Eds.), Proceedings of the ISWC-2006 Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2006) (pp. 67–68). CEUR Workshop Proceedings. http://hdl.handle.net/20.500.12708/51718
  • Variable-Strength Conditional Preferences for Ranking Objects in Ontologies / Lukasiewicz, T., & Schellhase, J. (2006). Variable-Strength Conditional Preferences for Ranking Objects in Ontologies. In Y. Sure & J. Domingue (Eds.), Proceedings of the 3rd European Semantic Web Conference (ESWC 2006), Budva, Montenegro, June 2006 (pp. 288–302). Lecture Notes in Computer Science. Springer. http://hdl.handle.net/20.500.12708/51712
  • Preferences, Links, and Probabilities for Ranking Objects in Ontologies / Lukasiewicz, T., & Schellhase, J. (2006). Preferences, Links, and Probabilities for Ranking Objects in Ontologies. In P. C. G. da Costa, K. B. Laskey, K. J. Laskey, F. Fung, & M. Pool (Eds.), Proceedings of the ISWC-2006 Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2006) (pp. 65–66). CEUR Workshop Proceedings. http://hdl.handle.net/20.500.12708/51719
  • Fuzzy Description Logic Programs under the Answer Set Semantics for the Semantic Web / Lukasiewicz, T. (2006). Fuzzy Description Logic Programs under the Answer Set Semantics for the Semantic Web. In T. Eiter, E. Franconi, R. Hodgson, & S. Stephens (Eds.), Proceedings of the 2nd International Conference on Rules and Rule Markup Languages for the Semantic Web (RuleML 2006) (pp. 89–96). IEEE Computer Society. http://hdl.handle.net/20.500.12708/51717
  • Adaptive Multi-Agent Programming in GTGolog / Finzi, A., & Lukasiewicz, T. (2006). Adaptive Multi-Agent Programming in GTGolog. In G. Brewka, S. Coradeschi, A. Perini, & P. Traverso (Eds.), Proceedings of the 17th biennial European Conference on Artificial Intelligence (ECAI 2006) (pp. 753–754). IOS Press. http://hdl.handle.net/20.500.12708/51716
  • Game-Theoretic Agent Programming in Golog under Partial Observability / Finzi, A., & Lukasiewicz, T. (2006). Game-Theoretic Agent Programming in Golog under Partial Observability. In C. Freksa, M. Kohlhase, & K. Schill (Eds.), Proceedings of the 29th Annual German Conference on Artificial Intelligence (KI 2006), Bremen, Germany, June 2006. (pp. 113–127). Lecture Notes in Computer Science, Springer. http://hdl.handle.net/20.500.12708/51715
  • Adaptive Multi-Agent Programming in GTGolog / Finzi, A., & Lukasiewicz, T. (2006). Adaptive Multi-Agent Programming in GTGolog. In C. Freksa, M. Kohlhase, & K. Schill (Eds.), Proceedings of the 29th Annual German Conference on Artificial Intelligence (KI 2006), Bremen, Germany, June 2006. (pp. 389–403). Lecture Notes in Computer Science. Springer. http://hdl.handle.net/20.500.12708/51714
  • Variable-Strength Conditional Preferences for Matchmaking in Description Logics / Lukasiewicz, T., & Schellhase, J. (2006). Variable-Strength Conditional Preferences for Matchmaking in Description Logics. In P. Doherty, J. Mylopoulos, & C. Welty (Eds.), Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), Lake District, UK, June 2006. (pp. 164–174). AAAI Press. http://hdl.handle.net/20.500.12708/51713
  • A novel combination of answer set programming with description logics for the Semantic Web / Lukasiewicz, T. (2006). A novel combination of answer set programming with description logics for the Semantic Web (INFSYS RR-1843-06-08). http://hdl.handle.net/20.500.12708/33073
  • An Overview of Uncertainty and Vagueness in Description Logics for the Semantic Web / Lukasiewicz, T., & Straccia, U. (2006). An Overview of Uncertainty and Vagueness in Description Logics for the Semantic Web (INFSYS RR-1843-06-07). http://hdl.handle.net/20.500.12708/33072
  • Probabilistic Description Logics for the Semantic Web / Lukasiewicz, T. (2006). Probabilistic Description Logics for the Semantic Web (INFSYS RR-1843-06-05). http://hdl.handle.net/20.500.12708/33071
  • Probabilistic Description Logic Programs / Lukasiewicz, T. (2006). Probabilistic Description Logic Programs (INFSYS RR-1843-06-04). http://hdl.handle.net/20.500.12708/33070

2005

2004

2003

2002