TU Wien Informatics

Role

2025S

 

  • MCSat-Based Finite Field Reasoning in the Yices2 SMT Solver (Short Paper) / Hader, T., Kaufmann, D., Irfan, A., Graham-Lengrand, S., & Kovács, L. (2024). MCSat-Based Finite Field Reasoning in the Yices2 SMT Solver (Short Paper). In Automated Reasoning: 12th International Joint Conference, IJCAR 2024, Nancy, France, July 3–6, 2024, Proceedings, Part I (pp. 386–395). Springer International Publishing. https://doi.org/10.1007/978-3-031-63498-7_23
    Projects: ARTIST (2021–2026) / CalgSAT (2024–2027) / SFB SPyCoDe (2023–2026)
  • An SMT-LIB Theory of Finite Fields / Hader, T., & Ozdemir, A. (2024). An SMT-LIB Theory of Finite Fields. In Proceedings of the 22nd International Workshop on Satisfiability Modulo Theories (SMT 2024), Montreal, Canada, July, 22-23, 2024. 22nd International Workshop on Satisfiability Modulo Theories (SMT 2024), Montreal, Canada. CEUR Workshop Proceedings. https://doi.org/10.34726/8461
    Download: An SMT-LIB Theory of Finite Fields (1.17 MB)
  • SMT Solving over Finite Field Arithmetic / Hader, T., Kaufmann, D., & Kovacs, L. (2023). SMT Solving over Finite Field Arithmetic. In R. Piscac & A. Voronkov (Eds.), Proceedings of 24th International Conference on Logic for Programming, Artificial Intelligence and Reasoning (pp. 238–256). https://doi.org/10.29007/4n6w
    Project: ARTIST (2021–2026)
  • An SMT Approach for Solving Polynomials over Finite Fields / Hader, T., & Kovacs, L. (2022). An SMT Approach for Solving Polynomials over Finite Fields. In Proceedings of the 20th Internal Workshop on Satisfiability Modulo Theories (SMT) (pp. 90–98).
    Project: ARTIST (2021–2026)
  • Non-linear SMT-reasoning over finite fields / Hader, T. (2022). Non-linear SMT-reasoning over finite fields [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2022.89445
    Download: PDF (512 KB)