Thomas Gärtner
Univ.Prof. Dipl.-Ing.(BA) Dr.rer.nat. / MSc
About
My main research interests are efficient and effective machine learning and data mining algorithms. Machine learning considers the problem of extracting useful functional or probabilistic dependencies from a sample of data. Such dependencies can then, for instance, be used to predict properties of partially observed data. Data mining is often used in a broader sense and includes several different computational problems, for instance, finding regularites or patterns in data. By efficiency I mean on the one hand the classical computational complexity of decision, enumeration, etc problems but on the other hand also a satisfactory response time that allows for effectiveness. By effectiveness I mean how well an algorithm helps to solve a real world problem. My main research interests are efficient and effective machine learning and data mining algorithms. My recent focus is on challenges relevant to the constructive machine learning setting where the task is to find domain instances with desired properties and the mapping between instances and their properties is only partially accessible. This includes structured output prediction, active learning/search, online learning/optimisation, knowledge-based learning and related areas. I am most interested in cases of this setting where at least one of the involved spaces is not a Euclidean space such as the set of graphs. My approach in many cases is based on kernel methods where I have focussed originally on kernels for structured data, moved to semi-supervised/transductive learning, and am currently looking at parallel/distributed approaches as well as fast approximations. The most recent knowledge-based kernel method was for instance focussing on interactive visualisations for data exploration. Application areas which I am often considering when looking for novel machine learning challenges are chemoinformatics and computer games.
Roles
-
Head of Research Unit
Machine Learning, E194-06 -
Full Professor
Machine Learning, E194-06 -
Curriculum Commission for Business Informatics
Principal Member
Courses
2022W
- Bachelor Thesis in Computer Science / 194.112 / PR
- Machine Learning / 184.702 / VU
- Machine Learning Algorithms and Applications / 194.101 / PR
- Project in Computer Science 1 - Machine Learning Algorithms and Applications / 194.119 / PR
- Scientific Research and Writing / 193.052 / SE
- Seminar for Master Students in Data Science / 180.772 / SE
- Seminar for PhD Students / 194.110 / SE
- Seminar in Artificial Intelligence - Theoretical Aspects of Machine Learning / 194.118 / SE
- Theoretical Foundations and Research Topics in Machine Learning / 194.100 / VU
2023S
- Bachelor Thesis in Computer Science / 194.112 / PR
- Interdisciplinary Project in Data Science / 194.060 / PR
- Machine Learning / 184.702 / VU
- Machine Learning Algorithms and Applications / 194.101 / PR
- Orientation Bachelor with Honors of Informatics and Business Informatics / 180.767 / SE
- Project in Computer Science 1 - Machine Learning Algorithms and Applications / 194.119 / PR
- Scientific Research and Writing / 193.052 / SE
- Seminar for PhD Students / 194.110 / SE
- Seminar in Artificial Intelligence - Theoretical Aspects of Machine Learning / 194.118 / SE
- Theoretical Foundations and Research Topics in Machine Learning / 194.100 / VU
Projects
-
Modelling Complex Structured Real Biological and Chemical Data using MachineLearning
2022 – 2023 / Austrian Exchange Service (OeAD) -
Artificial Intelligence for Advanced SAR Processing
2021 – 2023 / Austrian Research Promotion Agency (FFG)
Publications
Note: Due to the rollout of TU Wien’s new publication database, the list below may be slightly outdated. Once the migration is complete, everything will be up to date again.
- Krein support vector machine classification of antimicrobial peptides / Redshaw, J., Ting, D. S. J., Brown, A., Hirst, J. D., & Gärtner, T. (2023). Krein support vector machine classification of antimicrobial peptides. Digital Discovery. https://doi.org/10.1039/D3DD00004D
- Expectation Complete Graph Representations Using Graph Homomorphisms / Welke, P., Thiessen, M., & Gärtner, T. (2022, November 30). Expectation Complete Graph Representations Using Graph Homomorphisms [Poster Presentation]. First Learning on Graphs Conference (LoG 2022), International. https://doi.org/10.34726/3883
- Expectation Complete Graph Representations using Graph Homomorphisms / Thiessen, M., Pascal Welke, & Gärtner, T. (2022, October 25). Expectation Complete Graph Representations using Graph Homomorphisms [Presentation]. Workshop: Hot Topics in Graph Neural Networks, Kassel, Germany.
- Expectation Complete Graph Representations Using Graph Homomorphisms / Thiessen, M., Welke, P., & Gärtner, T. (2022, October 21). Expectation Complete Graph Representations Using Graph Homomorphisms [Poster Presentation]. New Frontiers in Graph Learning (GLFrontiers) NeurIPS 2022 Workshop, New Orleans, United States of America (the). https://doi.org/10.34726/3863
- Weisfeiler and Leman Return with Graph Transformations / Jogl, F., Thiessen, M., & Gärtner, T. (2022). Weisfeiler and Leman Return with Graph Transformations. In 18th International Workshop on Mining and Learning with Graphs - Accepted Papers. 18th International Workshop on Mining and Learning with Graphs, Grenoble, France. https://doi.org/10.34726/3829
- Reducing Learning on Cell Complexes to Graphs / Jogl, F., Thiessen, M., & Gärtner, T. (2022). Reducing Learning on Cell Complexes to Graphs. In ICLR 2022 Workshop on Geometrical and Topological Representation Learning. ICLR 2022 Workshop on Geometrical and Topological Representation Learning, International. https://doi.org/10.34726/3421
- Online learning of convex sets on graphs / Thiessen, M., & Gärtner, T. (2022). Online learning of convex sets on graphs. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022), Grenoble, France.
- Kernel Methods for Predicting Yields of Chemical Reactions / Haywood, A. L., Redshaw, J., Hanson-Heine, M. W. D., Taylor, A., Brown, A., Mason, A. M., Gärtner, T., & Hirst, J. D. (2022). Kernel Methods for Predicting Yields of Chemical Reactions. Journal of Chemical Information and Modeling, 62(9), 2077–2092. https://doi.org/10.1021/acs.jcim.1c00699
- Active Learning Convex Halfspaces on Graphs / Thiessen, M., & Gärtner, T. (2021). Active Learning Convex Halfspaces on Graphs. In SubSetML @ ICML2021: Subset Selection in Machine Learning: From Theory to Practice. SubSetML: Subset Selection in Machine Learning: From Theory to Practice, International. https://doi.org/10.34726/3901
- Active Learning of Convex Halfspaces on Graphs / Thiessen, M., & Gärtner, T. (2021). Active Learning of Convex Halfspaces on Graphs. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021) (pp. 1–13). https://doi.org/10.34726/1841
- Controllable Network Data Balancing with GANs / Meghdouri, F., Schmied, T., Gärtner, T., & Zseby, T. (2021). Controllable Network Data Balancing with GANs. NeurIPS workshop on Deep Generative Models and Downstream Applications 2021, Online, International. http://hdl.handle.net/20.500.12708/91382
- Active Learning of Convex Halfspaces on Graphs / Thiessen, M., & Gärtner, T. (2021). Active Learning of Convex Halfspaces on Graphs. In Advances in Neural Information Processing Systems 34. Advances in Neural Information Processing Systems 34. http://hdl.handle.net/20.500.12708/58787
- Active Learning on Graphs with Geodesically Convex Classes / Thiessen, M., & Gärtner, T. (2020). Active Learning on Graphs with Geodesically Convex Classes. In Proceedings of 16th International Workshop on Mining and Learning with Graphs (MLG’20). 16th International Workshop on Mining and Learning with Graphs, Austria. https://doi.org/10.34726/3467
- Machine Learning for Chemical Synthesis / Haywood, A. L., Redshaw, J., Gärtner, T., Taylor, A., Mason, A. M., & Hirst, J. D. (2020). Machine Learning for Chemical Synthesis. In H. M. Cartwright (Ed.), Machine Learning in Chemistry : The Impact of Artificial Intelligence (pp. 169–194). The Royal Society of Chemistry. https://doi.org/10.1039/9781839160233-00169
Supervisions
Note: Due to the rollout of TU Wien’s new publication database, the list below may be slightly outdated. Once the migration is complete, everything will be up to date again.
- Do we need to Improve message passing? Improving graph neural networks with graph transformations / Jogl, F. (2022). Do we need to Improve message passing? Improving graph neural networks with graph transformations [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2022.103141
- Self-supervision, data augmentation and online fine-tuning for offline RL / Schmied, T. (2022). Self-supervision, data augmentation and online fine-tuning for offline RL [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2022.89725