Tamara Drucks
Univ.Ass.in Dipl.-Ing.in
Role
-
PreDoc Researcher
Machine Learning, E194-06
Courses
2024W
- Introduction to Machine Learning / 194.025 / VU
- Machine Learning Algorithms and Applications / 194.101 / PR
- Project in Computer Science 1 / 194.145 / PR
- Seminar in Artificial Intelligence - Theoretical Aspects of Machine Learning / 194.118 / SE
- Theoretical Foundations and Research Topics in Machine Learning / 194.100 / VU
2025S
- Bachelor Thesis in Computer Science / 194.112 / PR
Publications
- The Expressive Power of Path-Based Graph Neural Networks / Graziani, C., Drucks, T., Jogl, F., Bianchini, M., Scarselli, F., & Gärtner, T. (2024). The Expressive Power of Path-Based Graph Neural Networks. In Z. K. Ruslan Salakhutdinov Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, Felix Berkenkamp (Ed.), Proceedings of the 41st International Conference on Machine Learning. PMLR.
-
Maximally Expressive GNNs for Outerplanar Graphs
/
Bause, F., Jogl, F., Indri, P., Drucks, T., Penz, D., Kriege, N., Gärtner, T., Welke, P., & Thiessen, M. (2023). Maximally Expressive GNNs for Outerplanar Graphs. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning. NeurIPS 2023 Workshop: New Frontiers in Graph Learning, New Orleans, LA, United States of America (the). OpenReview.net. https://doi.org/10.34726/5433
Download: PDF (880 KB)
Project: StruDL (2023–2027) -
Maximally Expressive GNNs for Outerplanar Graphs
/
Bause, F., Jogl, F., Indri, P., Drucks, T., Penz, D., Kriege, N., Gärtner, T., Welke, P., & Thiessen, M. (2023, December 1). Maximally Expressive GNNs for Outerplanar Graphs [Poster Presentation]. Learning-on-Graphs Conference 2023: Local Meetup, München, Germany. https://doi.org/10.34726/5344
Downloads: Paper (880 KB) / Poster (422 KB)
Project: StruDL (2023–2027) -
ModelRevelator: Fast phylogenetic model estimation via deep learning
/
Burgstaller-Muehlbacher, S., Crotty, S., Schmidt, H., Reden, F., Drucks, T., & von Haeseler, A. (2023). ModelRevelator: Fast phylogenetic model estimation via deep learning. Molecular Phylogenetics and Evolution, 188, Article 107905. https://doi.org/10.1016/j.ympev.2023.107905
Download: PDF (5.18 MB) -
No PAIN no Gain: More Expressive GNNs with Paths
/
Graziani, C., Drucks, T., Bianchini, M., Scarselli, F., & Gärtner, T. (2023). No PAIN no Gain: More Expressive GNNs with Paths. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning. NeurIPS 2023 Workshop: New Frontiers in Graph Learning, New Orleans, LA, United States of America (the). OpenReview.net. https://doi.org/10.34726/5429
Download: PDF (1.01 MB) -
Can stochastic weight averaging improve generalization in private learning?
/
Patrick Indri, Tamara Drucks, & Gärtner, T. (2023). Can stochastic weight averaging improve generalization in private learning? In ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning Models. ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning Models, Kigali, Rwanda. https://doi.org/10.34726/5349
Download: Main paper (366 KB) -
Representation learning for variable-sized multiple sequence alignments
/
Drucks, T. (2021). Representation learning for variable-sized multiple sequence alignments [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.88083
Download: PDF (24.3 MB)
Supervisions
-
On SGD with momentum
/
Plattner, M. (2023). On SGD with momentum [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.106165
Download: PDF (1.69 MB)