TU Wien Informatics

20 Years

Stefan Szeider

Univ.Prof. Mag.rer.nat. Dr.rer.nat.

Research Focus

Research Areas

  • Combinatorial Optimization, Automated Reasoning, Algorithms, satisfiability, computational complexity, Fixed Parameter Tractability, Constraint satisfaction, Artificial Intelligence, Networks
Stefan Szeider

About

Design and analysis of efficient algorithms for the solution of hard problems that arise in logic, artificial intelligence, and networks. Theory and Application of SAT (satisfiability) and constraint satisfaction methods. Establishment of theoretical limits for algorithmic techniques.

Roles

2023

  • SAT-boosted tabu search for coloring massive graphs / Schidler, A., & Szeider, S. (2023). SAT-boosted tabu search for coloring massive graphs. ACM Journal on Experimental Algorithmics, 28, Article 1.5. https://doi.org/10.1145/3603112
    Download: PDF (1.15 MB)
    Projects: DK - Logic (2014–2023) / REVEAL-AI (2020–2024) / SLIM (2019–2024) / STRIDES (2023–2026)
  • Computing optimal hypertree decompositions with SAT / Schidler, A., & Szeider, S. (2023). Computing optimal hypertree decompositions with SAT. Artificial Intelligence, 325, Article 104015. https://doi.org/10.1016/j.artint.2023.104015
    Download: PDF (1.74 MB)
    Projects: REVEAL-AI (2020–2024) / SLIM (2019–2024) / STRIDES (2023–2026)
  • Are hitting formulas hard for resolution? / Peitl, T., & Szeider, S. (2023). Are hitting formulas hard for resolution? Discrete Applied Mathematics, 337, 173–184. https://doi.org/10.1016/j.dam.2023.05.003
    Download: PDF (732 KB)
    Project: REVEAL-AI (2020–2024)
  • Searching for Smallest Universal Graphs and Tournaments with SAT / Zhang, T., & Szeider, S. (2023). Searching for Smallest Universal Graphs and Tournaments with SAT. In R. Yap (Ed.), 29th International Conference on Principles and Practice of Constraint Programming. https://doi.org/10.4230/LIPIcs.CP.2023.39
    Download: PDF (722 KB)
    Project: REVEAL-AI (2020–2024)
  • Proven Optimally-Balanced Latin Rectangles with SAT / Ramaswamy, V. P., & Szeider, S. (2023). Proven Optimally-Balanced Latin Rectangles with SAT. In R. Yap (Ed.), 29th International Conference on Principles and Practice of Constraint Programming (CP 2023). Schloss-Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CP.2023.48
    Download: PDF (551 KB)
    Projects: REVEAL-AI (2020–2024) / STRIDES (2023–2026)
  • CSP beyond tractable constraint languages / Dreier, J., Ordyniak, S., & Szeider, S. (2023). CSP beyond tractable constraint languages. Constraints, 28(3), 450–471. https://doi.org/10.1007/s10601-023-09362-3
    Download: PDF (503 KB)
    Projects: REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • IPASIR-UP: User Propagators for CDCL / Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., & Biere, A. (2023). IPASIR-UP: User Propagators for CDCL. In M. Mahajan & F. Slivovsky (Eds.), 26th International Conference on Theory and Applications of Satisfiability Testing (pp. 8:1-8:13). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAT.2023.8
    Download: PDF (797 KB)
    Projects: INCR (2021–2024) / REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • SAT-Based Generation of Planar Graphs / Markus Kirchweger, Scheucher, M., & Stefan Szeider. (2023). SAT-Based Generation of Planar Graphs. In 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023). 26th International Conference on Theory and Applications of Satisfiability Testing (SAT), Alghero, Italy. Schloss-Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAT.2023.14
    Download: PDF (581 KB)
    Projects: REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • A SAT Solver's Opinion on the Erdos-Faber-Lovász Conjecture / Kirchweger, M., Peitl, T., & Szeider, S. (2023). A SAT Solver’s Opinion on the Erdos-Faber-Lovász Conjecture. In M. Mahajan (Ed.), 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023) (pp. 1–17). Schloss-Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAT.2023.13
    Download: PDF (651 KB)
    Projects: REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • The silent (r)evolution of SAT / Fichte, J. K., Le Berre, D., Hecher, M., & Szeider, S. (2023). The silent (r)evolution of SAT. Communications of the ACM, 66(6), 64–72. https://doi.org/10.1145/3560469
    Download: PDF (1020 KB)
    Projects: HYPAR (2019–2024) / REVEAL-AI (2020–2024) / START (2014–2022)
  • On the parameterized complexity of clustering problems for incomplete data / Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2023). On the parameterized complexity of clustering problems for incomplete data. Journal of Computer and System Sciences, 134, 1–19. https://doi.org/10.1016/j.jcss.2022.12.001
  • Isomorph-Free Generation of Combinatorial Objects with SAT Modulo Symmetries / Szeider, S. (2023, April 18). Isomorph-Free Generation of Combinatorial Objects with SAT Modulo Symmetries [Presentation]. Extended Reunion: Satisfiability 2023, United States of America (the).
  • Computing Twin-width with SAT and Branch & Bound / Schidler, A., & Szeider, S. (2023). Computing Twin-width with SAT and Branch & Bound. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23) (pp. 2013–2021). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2023/224
    Download: PDF (263 KB)
    Projects: DK - Logic (2014–2023) / REVEAL-AI (2020–2024) / SLIM (2019–2024) / STRIDES (2023–2026)
  • The Parameterized Complexity of Finding Concise Local Explanations / Ordyniak, S., Paesani, G., & Szeider, S. (2023). The Parameterized Complexity of Finding Concise Local Explanations. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23) (pp. 3312–3320). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2023/369
  • Co-Certificate Learning with SAT Modulo Symmetries / Kirchweger, M., Peitl, T., & Szeider, S. (2023). Co-Certificate Learning with SAT Modulo Symmetries. In E. Elkind (Ed.), Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23) (pp. 1944–1953). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2023/216
  • Circuit Minimization with Exact Synthesis: From QBF Back to SAT / Reichl, F. X., Slivovsky, F., & Szeider, S. (2023). Circuit Minimization with Exact Synthesis: From QBF Back to SAT. In IWLS 2023: 32nd International Workshop on Logic & Synthesis (pp. 98–105).
  • Circuit Minimization with QBF-Based Exact Synthesis / Reichl, F.-X., Slivovsky, F., & Szeider, S. (2023). Circuit Minimization with QBF-Based Exact Synthesis. In Proceedings of the 37th AAAI Conference on Artificial Intelligence (pp. 4087–4094). AAAI Press. https://doi.org/10.1609/aaai.v37i4.25524
    Download: PDF (154 KB)
  • From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem / Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2023). From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem. In N. Misra & M. Wahlström (Eds.), 18th International Symposium on Parameterized and Exact Computation (IPEC 2023) (pp. 1–14). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.IPEC.2023.16
  • Learning Small Decision Trees with Large Domain / Eiben, E., Ordyniak, S., Paesani, G., & Szeider, S. (2023). Learning Small Decision Trees with Large Domain. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23) (pp. 3184–3192). https://doi.org/10.24963/ijcai.2023/355
  • The Computational Complexity of Concise Hypersphere Classification / Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2023). The Computational Complexity of Concise Hypersphere Classification. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, & J. Scarlett (Eds.), Proceedings of the 40th International Conference on Machine Learning (pp. 9060–9070).

2022

  • Algorithmic applications of tree-cut width / Ganian, R., Kim, E. J., & Szeider, S. (2022). Algorithmic applications of tree-cut width. SIAM Journal on Discrete Mathematics, 36(4), 2635–2666. https://doi.org/10.1137/20M137478X
    Download: PDF (550 KB)
    Projects: NFPC (2018–2022) / Parameterisierte Analyse in der Künstlichen Intelligenz (2021–2026) / REVEAL-AI (2020–2024)
  • SAT Backdoors: Depth Beats Size / Dreier, J., Ordyniak, S., & Szeider, S. (2022). SAT Backdoors: Depth Beats Size. In 30th Annual European Symposium on Algorithms (ESA 2022) (pp. 1–18). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2022.46
    Download: PDF (829 KB)
    Projects: REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • Finding a Cluster in Incomplete Data / Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2022). Finding a Cluster in Incomplete Data. In 30th Annual European Symposium on Algorithms (ESA 2022) (pp. 1–14). Schloss Dagstuhl -- Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2022.47
    Download: PDF (610 KB)
    Projects: Parameterisierte Analyse in der Künstlichen Intelligenz (2021–2026) / SLIM (2019–2024)
  • 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022) / Szeider, S., Ganian, R., & Silva, A. (Eds.). (2022). 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). https://doi.org/10.4230/LIPIcs.MFCS.2022.0
    Download: PDF (429 KB)
  • Threshold Treewidth and Hypertree Width / Ganian, R., Schidler, A., Sorge, M., & Szeider, S. (2022). Threshold Treewidth and Hypertree Width. Journal of Artificial Intelligence Research, 74, 1687–1713. https://doi.org/10.1613/JAIR.1.13661
    Download: PDF (6.1 MB)
    Projects: NFPC (2018–2022) / Parameterisierte Analyse in der Künstlichen Intelligenz (2021–2026) / REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • A SAT Attack on Rota’s Basis Conjecture / Kirchweger, M., Scheucher, M., & Szeider, S. (2022). A SAT Attack on Rota’s Basis Conjecture. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022) (pp. 1–18). Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH. https://doi.org/10.4230/LIPIcs.SAT.2022.4
    Download: PDF (704 KB)
    Project: SLIM (2019–2024)
  • Weighted Model Counting with Twin-Width / Ganian, R., Pokrývka, F., Schidler, A., Simonov, K., & Szeider, S. (2022). Weighted Model Counting with Twin-Width. In K. S. Meel & O. Strichman (Eds.), 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022) (pp. 1–17). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAT.2022.15
    Download: PDF (719 KB)
    Projects: NFPC (2018–2022) / Parameterisierte Analyse in der Künstlichen Intelligenz (2021–2026) / REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • CSP Beyond Tractable Constraint Languages / Dreier, J., Ordyniak, S., & Szeider, S. (2022). CSP Beyond Tractable Constraint Languages. In C. Solnon (Ed.), 28th International Conference on Principles and Practice of Constraint Programming (pp. 1–17). Schloss Dagstuhl, Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CP.2022.20
    Download: PDF (681 KB)
  • Tractable Abstract Argumentation via Backdoor-Treewidth / Dvořák, W., Hecher, M., König, M., Schidler, A., Szeider, S., & Woltran, S. (2022). Tractable Abstract Argumentation via Backdoor-Treewidth. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (pp. 5608–5615). AAAI Press. https://doi.org/10.1609/aaai.v36i5.20501
    Download: PDF (1.52 MB)
    Projects: HYPAR (2019–2024) / REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • Preface: Ninth workshop on graph classes, optimization, and Width Parameters, Vienna, Austria / Ganian, R., Kratochvíl, J., & Szeider, S. (2022). Preface: Ninth workshop on graph classes, optimization, and Width Parameters, Vienna, Austria. In S. Szeider, R. Ganian, & J. Kratochwill (Eds.), Ninth workshop on graph classes, optimization, and Width Parameters (Vol. 312). https://doi.org/10.1016/j.dam.2022.02.009
  • Sum-of-Products with Default Values: Algorithms and Complexity Results / Ganian, R., Kim, E. J., Slivovsky, F., & Szeider, S. (2022). Sum-of-Products with Default Values: Algorithms and Complexity Results. Journal of Artificial Intelligence Research, 73, 535–552. https://doi.org/10.1613/JAIR.1.12370
    Download: PDF (353 KB)
    Projects: NFPC (2018–2022) / QBF (2015–2018)
  • Learning Large Bayesian Networks with Expert Constraints / Peruvemba Ramaswamy, V., & Szeider, S. (2022). Learning Large Bayesian Networks with Expert Constraints. In Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022) (pp. 1592–1601). PMLR. https://doi.org/10.34726/3821
    Download: PDF (606 KB)
  • Learning Fast-Inference Bayesian Networks / Peruvemba Ramaswamy, V., & Szeider, S. (2022). Learning Fast-Inference Bayesian Networks. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021). 35th conference on neural information processing systems (NeurIPS 2021), International. https://doi.org/10.34726/4023
    Download: PDF (1.07 MB)
    Projects: REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • From Twin-Width to Propositional Logic and Back / Szeider, S. (2022). From Twin-Width to Propositional Logic and Back [Conference Presentation]. Workshop on Graph Classes, Optimization, and Width Parameters (GROW), Slovenia. http://hdl.handle.net/20.500.12708/153793
  • SAT-based Local Improvement / Szeider, S. (2022). SAT-based Local Improvement [Keynote Presentation]. UNRAVEL-LOGICS workshop, Austria.
  • SLIM- SAT-based Local Improvement / Szeider, S. (2022). SLIM- SAT-based Local Improvement [Conference Presentation]. Dagstuhl Seminar 22411 Theory and Practice of SAT and Combinatorial Solving, Germany.
  • The Parameterized Complexity of SAT / Szeider, S. (2022). The Parameterized Complexity of SAT [Conference Presentation]. Workshop Parameterized Complexity of Computational Reasoning (PCCR 2022), Israel.
    Download: PDF (12.6 MB)
  • A SAT Approach to Twin-Width / Schidler, A., & Szeider, S. (2022). A SAT Approach to Twin-Width. In 2022 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX) (pp. 67–77). https://doi.org/10.1137/1.9781611977042.6

2021

  • Chapter 17. Fixed-Parameter Tractability / Samer, M., & Szeider, S. (2021). Chapter 17. Fixed-Parameter Tractability. In A. Biere, M. Heule, H. van Maaren, & T. Walsh (Eds.), Frontiers in Artificial Intelligence and Applications. IOS Press. https://doi.org/10.3233/faia201000
  • The Parameterized Complexity of Clustering Incomplete Data / Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2021). The Parameterized Complexity of Clustering Incomplete Data. In Thirty-Fifth AAAI Conference on Artificial Intelligence (pp. 7296–7304). AAAI Press. http://hdl.handle.net/20.500.12708/58587
  • Parameterized Complexity of Small Decision Tree Learning / Ordyniak, S., & Szeider, S. (2021). Parameterized Complexity of Small Decision Tree Learning. In Thirty-Fifth AAAI Conference on Artificial Intelligence (pp. 1–9). AAAI Press. http://hdl.handle.net/20.500.12708/58602
  • New width parameters for SAT and #SAT / Ganian, R., & Szeider, S. (2021). New width parameters for SAT and #SAT. Artificial Intelligence, 295(103460), 103460. https://doi.org/10.1016/j.artint.2021.103460
  • Finding the Hardest Formulas for Resolution (Extended Abstract) / Peitl, T., & Szeider, S. (2021). Finding the Hardest Formulas for Resolution (Extended Abstract). In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. IJCAI 2021 - 30th International Joint Conference on Artificial Intelligence, Montreal, Canada, International. https://doi.org/10.24963/ijcai.2021/657
  • Computing Optimal Hypertree Decompositions with SAT / Schidler, A., & Szeider, S. (2021). Computing Optimal Hypertree Decompositions with SAT. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. IJCAI 2021 - 30th International Joint Conference on Artificial Intelligence, Montreal, Canada, International. https://doi.org/10.24963/ijcai.2021/196
  • SAT Modulo Symmetries for Graph Generation / Kirchweger, M., & Szeider, S. (2021). SAT Modulo Symmetries for Graph Generation. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021) (pp. 1–16). LIPICS. https://doi.org/10.4230/LIPIcs.CP.2021.34
  • Certified DQBF Solving by Definition Extraction / Reichl, F.-X., Slivovsky, F., & Szeider, S. (2021). Certified DQBF Solving by Definition Extraction. In Theory and Applications of Satisfiability Testing – SAT 2021 (pp. 499–517). LNCS / Springer. https://doi.org/10.1007/978-3-030-80223-3_34
  • SAT-based Decision Tree Learning for Large Data Sets / Schidler, A., & Szeider, S. (2021). SAT-based Decision Tree Learning for Large Data Sets. In Thirty-Fifth AAAI Conference on Artificial Intelligence (pp. 3904–3912). AAAI Press. http://hdl.handle.net/20.500.12708/58603
  • Turbocharging Treewidth-Bounded Bayesian Network Structure Learning / Ramaswamy, V. P., & Szeider, S. (2021). Turbocharging Treewidth-Bounded Bayesian Network Structure Learning. In Thirty-Fifth AAAI Conference on Artificial Intelligence (pp. 3895–3903). AAAI Press. http://hdl.handle.net/20.500.12708/58598
  • Threshold Treewidth and Hypertree Width / Ganian, R., Schidler, A., Sorge, M., & Szeider, S. (2021). Threshold Treewidth and Hypertree Width. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. IJCAI - International Joint Conference on Artificial Intelligence, Stockholm, EU. https://doi.org/10.24963/ijcai.2020/263

2020

  • On Existential MSO and Its Relation to ETH / Ganian, R., Haan, R. de, Kanj, I., & Szeider, S. (2020). On Existential MSO and Its Relation to ETH. ACM Transactions on Computation Theory, 12(4), 1–32. https://doi.org/10.1145/3417759
  • On the Parameterized Complexity of Clustering Incomplete Data into Subspaces of Small Rank / Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2020). On the Parameterized Complexity of Clustering Incomplete Data into Subspaces of Small Rank. In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 3906–3913). AAAI Press. https://doi.org/10.1609/aaai.v34i04.5804
  • A Time Leap Challenge for SAT-Solving / Fichte, J. K., Hecher, M., & Szeider, S. (2020). A Time Leap Challenge for SAT-Solving. In Lecture Notes in Computer Science (pp. 267–285). https://doi.org/10.1007/978-3-030-58475-7_16
    Projects: HYPAR (2019–2024) / START (2014–2022)
  • Breaking Symmetries with RootClique and LexTopSort / Fichte, J. K., Hecher, M., & Szeider, S. (2020). Breaking Symmetries with RootClique and LexTopSort. In Lecture Notes in Computer Science (pp. 286–303). https://doi.org/10.1007/978-3-030-58475-7_17
    Projects: HYPAR (2019–2024) / START (2014–2022)
  • Fixed-Parameter Tractability of Dependency QBF with Structural Parameters / Ganian, R., Peitl, T., Slivovsky, F., & Szeider, S. (2020). Fixed-Parameter Tractability of Dependency QBF with Structural Parameters. In Proceedings of the Seventeenth International Conference on Principles of Knowledge Representation and Reasoning. 17th International Conference on Principles of Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, Non-EU. https://doi.org/10.24963/kr.2020/40
  • Short Q-Resolution Proofs with Homomorphisms / Shukla, A., Slivovsky, F., & Szeider, S. (2020). Short Q-Resolution Proofs with Homomorphisms. In Theory and Applications of Satisfiability Testing – SAT 2020 (pp. 412–428). LNCS. https://doi.org/10.1007/978-3-030-51825-7_29
  • MaxSAT-Based Postprocessing for Treedepth / Peruvemba Ramaswamy, V., & Szeider, S. (2020). MaxSAT-Based Postprocessing for Treedepth. In Lecture Notes in Computer Science (pp. 478–495). LNCS. https://doi.org/10.1007/978-3-030-58475-7_28
  • Finding the Hardest Formulas for Resolution / Peitl, T., & Szeider, S. (2020). Finding the Hardest Formulas for Resolution. In Lecture Notes in Computer Science (pp. 514–530). LNCS. https://doi.org/10.1007/978-3-030-58475-7_30
  • Formalizing Graph Trail Properties in Isabelle/HOL / Kovács, L., Lachnitt, H., & Szeider, S. (2020). Formalizing Graph Trail Properties in Isabelle/HOL. In Lecture Notes in Computer Science (pp. 190–205). LNCS. https://doi.org/10.1007/978-3-030-53518-6_12
  • A Faster Algorithm for Propositional Model Counting Parameterized by Incidence Treewidth / Slivovsky, F., & Szeider, S. (2020). A Faster Algorithm for Propositional Model Counting Parameterized by Incidence Treewidth. In Theory and Applications of Satisfiability Testing – SAT 2020 (pp. 267–276). LNCS. https://doi.org/10.1007/978-3-030-51825-7_19
  • Computing Optimal Hypertree Decompositions / Schidler, A., & Szeider, S. (2020). Computing Optimal Hypertree Decompositions. In 2020 Proceedings of the Twenty-Second Workshop on Algorithm Engineering and Experiments (ALENEX) (pp. 1–11). siam. https://doi.org/10.1137/1.9781611976007.1

2019

  • Long-Distance Q-Resolution with Dependency Schemes / Peitl, T., Slivovsky, F., & Szeider, S. (2019). Long-Distance Q-Resolution with Dependency Schemes. Journal of Automated Reasoning, 63(1), 127–155. https://doi.org/10.1007/s10817-018-9467-3
  • Parameterized Complexity Results for the Completion and Clustering of Incomplete Data / Szeider, S., Ganian, R., Kanj, I., & Ordyniak, S. (2019). Parameterized Complexity Results for the Completion and Clustering of Incomplete Data. Kocoon Workshop, Arras, Frankreich, EU. http://hdl.handle.net/20.500.12708/86961
  • SAT-Encodings for Treecut Width and Treedepth / Ganian, R., Lodha, N., Ordyniak, S., & Szeider, S. (2019). SAT-Encodings for Treecut Width and Treedepth. In S. G. Kobourov & H. Meyerhenke (Eds.), Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM. https://doi.org/10.1137/1.9781611975499
  • A Compendium of Parameterized Problems at Higher Levels of the Polynomial Hierarchy / Haan, R. de, & Szeider, S. (2019). A Compendium of Parameterized Problems at Higher Levels of the Polynomial Hierarchy. Algorithms, 12(9), 188. https://doi.org/10.3390/a12090188
  • A SAT Approach to Branchwidth / Lodha, N., Ordyniak, S., & Szeider, S. (2019). A SAT Approach to Branchwidth. ACM Transactions on Computational Logic, 20(3), 1–24. https://doi.org/10.1145/3326159
  • Dependency Learning for QBF / Peitl, T., Slivovsky, F., & Szeider, S. (2019). Dependency Learning for QBF. Journal of Artificial Intelligence Research, 65, 181–208. https://doi.org/10.1613/jair.1.11529
  • On the parameterized complexity of (k, s)-SAT / Paulusma, D., & Szeider, S. (2019). On the parameterized complexity of (k, s)-SAT. Information Processing Letters, 143, 34–36. https://doi.org/10.1016/j.ipl.2018.11.005
  • Computational Thinking und ADA.wien / Szeider, S. (2019). Computational Thinking und ADA.wien. eEducation Fachtagung, Wien, Austria. http://hdl.handle.net/20.500.12708/86955
  • Proof Complexity of Fragments of Long-Distance Q-Resolution / Peitl, T., Slivovsky, F., & Szeider, S. (2019). Proof Complexity of Fragments of Long-Distance Q-Resolution. In Lecture Notes in Computer Science. Theory and Application of Satisfiability Testing -- SAT, Guangzhou, Non-EU. Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-24258-9
  • Combining Resolution-Path Dependencies with Dependency Learning / Peitl, T., Slivovsky, F., & Szeider, S. (2019). Combining Resolution-Path Dependencies with Dependency Learning. In Lecture Notes in Computer Science. Int. Conference on Theory and Applications of Satisfiability Testing, Trento, EU. LNCS. https://doi.org/10.1007/978-3-030-24258-9

2018

  • An SMT Approach to Fractional Hypertree Width / Fichte, J., Hecher, M., Lodha, N., & Szeider, S. (2018). An SMT Approach to Fractional Hypertree Width. In J. Hooker (Ed.), Principles and Practice of Constraint Programming, 24th International Conference, CP 2018 (pp. 109–127). Springer-Verlag. https://doi.org/10.1007/978-3-319-98334-9_8
    Project: START (2014–2022)
  • Meta-kernelization using well-structured modulators / Eiben, E., Ganian, R., & Szeider, S. (2018). Meta-kernelization using well-structured modulators. Discrete Applied Mathematics, 248, 153–167. https://doi.org/10.1016/j.dam.2017.09.018
  • Polynomial-Time Validation of QCDCL Certificates / Peitl, T., Slivovsky, F., & Szeider, S. (2018). Polynomial-Time Validation of QCDCL Certificates. In O. Beyersdorff & C. M. Wintersteiger (Eds.), Theory and Applications of Satisfiability Testing – SAT 2018 (pp. 253–269). Springer-Verlag, Lecture Notes in Artificial Intelligence 8268. https://doi.org/10.1007/978-3-319-94144-8_16
  • Portfolio-Based Algorithm Selection for Circuit QBFs / Hoos, H. H., Peitl, T., Slivovsky, F., & Szeider, S. (2018). Portfolio-Based Algorithm Selection for Circuit QBFs. In Lecture Notes in Computer Science (pp. 195–209). Springer-Verlag. https://doi.org/10.1007/978-3-319-98334-9_13
  • Parameterized Algorithms for the Matrix Completion Problem / Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2018). Parameterized Algorithms for the Matrix Completion Problem. In Proceeding of ICML (pp. 1642–1651). Journal of Machine Learning Research. http://hdl.handle.net/20.500.12708/57440

2017

  • The Constraint Satisfaction Problem: Complexity and Approximability / Szeider, S., Ordyniak, S., & Gaspers, S. (2017). The Constraint Satisfaction Problem: Complexity and Approximability. In The Constraint Satisfaction Problem: Complexity and Approximability (pp. 137–157). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. http://hdl.handle.net/20.500.12708/29616
  • Rigging Nearly Acyclic Tournaments Is Fixed-Parameter Tractable / Ramanujan, M. S., & Szeider, S. (2017). Rigging Nearly Acyclic Tournaments Is Fixed-Parameter Tractable. In Thirty-First AAAI Conference on Artificial Intelligence (pp. 3929–3935). http://hdl.handle.net/20.500.12708/57271
  • Dependency Learning for QBF / Peitl, T., Slivovsky, F., & Szeider, S. (2017). Dependency Learning for QBF. In Theory and Applications of Satisfiability Testing – SAT 2017 ; Gaspers, Serge; Walsh, Toby. Cham. https://doi.org/10.1007/978-3-319-66263-3_19
    Download: PDF (359 KB)
  • Parameterized complexity classes beyond para-NP / de Haan, R., & Szeider, S. (2017). Parameterized complexity classes beyond para-NP. Journal of Computer and System Sciences, 87, 16–57. https://doi.org/10.1016/j.jcss.2017.02.002
  • Combining Treewidth and Backdoors for CSP / Ganian, R., Ramanujan, M. S., & Szeider, S. (2017). Combining Treewidth and Backdoors for CSP. In H. Vollmer & B. Vallée (Eds.), 34th Symposium on Theoretical Aspects of Computer Science (pp. 429–445). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. https://doi.org/10.4230/LIPIcs.STACS.2017.36
  • Backdoors into heterogeneous classes of SAT and CSP / Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., & Živný, S. (2017). Backdoors into heterogeneous classes of SAT and CSP. Journal of Computer and System Sciences, 85, 38–56. https://doi.org/10.1016/j.jcss.2016.10.007
  • The Treewidth of Proofs / Müller, M., & Szeider, S. (2017). The Treewidth of Proofs. Information and Computation, 255, 147–164. http://hdl.handle.net/20.500.12708/147673
  • On the Parameterized Complexity of Finding Small Unsatisfiable Subsets of CNF Formulas and CSP Instances / Haan, R. D., Kanj, I., & Szeider, S. (2017). On the Parameterized Complexity of Finding Small Unsatisfiable Subsets of CNF Formulas and CSP Instances. ACM Transactions on Computational Logic, 18(3), 1–46. https://doi.org/10.1145/3091528
  • Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting / Ganian, R., Ramanujan, M. S., & Szeider, S. (2017). Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting. ACM Transactions on Algorithms, 13(2), 1–32. https://doi.org/10.1145/3014587
  • Solving Problems on Graphs of High Rank-Width / Eiben, E., Ganian, R., & Szeider, S. (2017). Solving Problems on Graphs of High Rank-Width. Algorithmica, 80(2), 742–771. https://doi.org/10.1007/s00453-017-0290-8
  • Backdoors for Constraint Satisfaction / Szeider, S. (2017). Backdoors for Constraint Satisfaction. Workshop Gutin 60, Großbritanien, EU. http://hdl.handle.net/20.500.12708/86682
  • Capturing Structure in Instances of the Propositional Satisfiability Problem / Szeider, S. (2017). Capturing Structure in Instances of the Propositional Satisfiability Problem. ÖMG-DMV-Congress 2017, Salzburg, Austria. http://hdl.handle.net/20.500.12708/86681
  • Get Satisfaction: Das Erfüllbarkeitsproblem in Theorie und Praxis / Szeider, S. (2017). Get Satisfaction: Das Erfüllbarkeitsproblem in Theorie und Praxis. 9. Informatiktag 2017, Tu Wien, Austria. http://hdl.handle.net/20.500.12708/86680
  • A SAT Approach to Branchwidth / Lodha, N., Ordyniak, S., & Szeider, S. (2017). A SAT Approach to Branchwidth. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017) (pp. 4894–4898). http://hdl.handle.net/20.500.12708/57272
  • New Width Parameters for Model Counting / Ganian, R., & Szeider, S. (2017). New Width Parameters for Model Counting. In Theory and Applications of Satisfiability Testing – SAT 2017 (pp. 38–52). International Conference on Theory and Applications of Satisfiability Testing. https://doi.org/10.1007/978-3-319-66263-3_3
  • SAT-Encodings for Special Treewidth and Pathwidth / Lodha, N., Ordyniak, S., & Szeider, S. (2017). SAT-Encodings for Special Treewidth and Pathwidth. In Theory and Applications of Satisfiability Testing – SAT 2017 (pp. 429–445). Springer International Publishing AG 2017. https://doi.org/10.1007/978-3-319-66263-3_27
  • Backdoor Treewidth for SAT / Ganian, R., Ramanujan, M. S., & Szeider, S. (2017). Backdoor Treewidth for SAT. In Theory and Applications of Satisfiability Testing – SAT 2017 (pp. 20–37). Springer-Verlag. https://doi.org/10.1007/978-3-319-66263-3_2

2016

  • Long Distance Q-Resolution with Dependency Schemes / Peitl, T., Slivovsky, F., & Szeider, S. (2016). Long Distance Q-Resolution with Dependency Schemes. In Lecture Notes in Computer Science ; Creignou, Nadia; Le Berre, Daniel. Cham. https://doi.org/10.1007/978-3-319-40970-2_31
    Download: PDF (1.21 MB)
  • Backdoors to q-Horn / Gaspers, S., Ordyniak, S., Ramanujan, M. S., Saurabh, S., & Szeider, S. (2016). Backdoors to q-Horn. Algorithmica, 74(1), 540–557. https://doi.org/10.1007/s00453-014-9958-5
  • Meta-kernelization with structural parameters / Ganian, R., Slivovsky, F., & Szeider, S. (2016). Meta-kernelization with structural parameters. Journal of Computer and System Sciences, 82(2), 333–346. https://doi.org/10.1016/j.jcss.2015.08.003
  • Soundness of Q-resolution with dependency schemes / Slivovsky, F., & Szeider, S. (2016). Soundness of Q-resolution with dependency schemes. Theoretical Computer Science, 612, 83–101. https://doi.org/10.1016/j.tcs.2015.10.020
  • Quantified conjunctive queries on partially ordered sets / Bova, S., Ganian, R., & Szeider, S. (2016). Quantified conjunctive queries on partially ordered sets. Theoretical Computer Science, 618, 72–84. https://doi.org/10.1016/j.tcs.2016.01.010
  • Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting / Ganian, R., Ramanujan, M. S., & Szeider, S. (2016). Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting. In R. Krauthgamer (Ed.), Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1670–1681). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611974331.ch114
  • Capturing Structure in SAT and Related Problems / Szeider, S. (2016). Capturing Structure in SAT and Related Problems. Theoretical Foundations of SAT Solving Workshop, Toronto, Kanada, Non-EU. http://hdl.handle.net/20.500.12708/86384
  • Capturing Structure in SAT and Related Problems / Szeider, S. (2016). Capturing Structure in SAT and Related Problems. International Workshop on Graph Structure and Satisfiability Testing, Bordeaux, France, EU. http://hdl.handle.net/20.500.12708/86383
  • Polynomial-Time Construction of Optimal MPI Derived Datatype Trees / Ganian, R., Kalany, M., Szeider, S., & Träff, J. L. (2016). Polynomial-Time Construction of Optimal MPI Derived Datatype Trees. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE 30th International Parallel and Distributed Processing Symposium (IPDPS 2016), Chicago, Illinois, USA, Non-EU. IEEE Computer Society. https://doi.org/10.1109/ipdps.2016.13
    Project: EPiGRAM (2013–2016)
  • Parameterized Complexity Results for Symbolic Model Checking of Temporal Logics / de Haan, R., & Szeider, S. (2016). Parameterized Complexity Results for Symbolic Model Checking of Temporal Logics. In Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning - KR 2016 (pp. 453–462). http://hdl.handle.net/20.500.12708/56825
  • A SAT Approach to Branchwidth / Lodha, N., Ordyniak, S., & Szeider, S. (2016). A SAT Approach to Branchwidth. In Proceedings of SAT 2016: Theory and Applications of Satisfiability Testing - SAT 2016 (pp. 179–195). http://hdl.handle.net/20.500.12708/56670
  • On Existential MSO and its Relation to ETH / Ganian, R., de Haan, R., Kanj, I., & Szeider, S. (2016). On Existential MSO and its Relation to ETH. In Proceedings of the 41st International Symposium on Mathematical Foundations of Computer Science (pp. 1–14). http://hdl.handle.net/20.500.12708/56669
  • Backdoors to Tractable Valued CSP / Ganian, R., Ramanujan, M. S., & Szeider, S. (2016). Backdoors to Tractable Valued CSP. In Principles and Practice of Constraint Programming (Proceedings of 22nd CP) (pp. 233–250). LNCS. http://hdl.handle.net/20.500.12708/56665
  • Backdoor Trees for Answer Set Programming / Fichte, J., & Szeider, S. (2016). Backdoor Trees for Answer Set Programming (DBAI-TR-2016-98). http://hdl.handle.net/20.500.12708/39079
    Project: START (2014–2022)

2015

  • A Complete Parameterized Complexity Analysis of Bounded Planning / Bäckström, C., Jonsson, P., Ordyniak, S., & Szeider, S. (2015). A Complete Parameterized Complexity Analysis of Bounded Planning. Journal of Computer and System Sciences, 81(7), 1311–1332. https://doi.org/10.1016/j.jcss.2015.04.002
  • On finding optimal polytrees / Gaspers, S., Koivisto, M., Liedloff, M., Ordyniak, S., & Szeider, S. (2015). On finding optimal polytrees. Theoretical Computer Science, 592, 49–58. https://doi.org/10.1016/j.tcs.2015.05.012
  • Meta-kernelization using Well-structured Modulators / Eiben, E., Ganian, R., & Szeider, S. (2015). Meta-kernelization using Well-structured Modulators. In T. Husfeldt & I. Kanj (Eds.), 10th International Symposium on Parameterized and Exact Computation (IPEC 2015) (pp. 114–126). LIPICs. https://doi.org/10.4230/LIPIcs.IPEC.2015.114
  • Polynomial-time Construction of Optimal Tree-structured Communication Data Layout Descriptions / Ganian, R., Kalany, M., Szeider, S., & Träff, J. L. (2015). Polynomial-time Construction of Optimal Tree-structured Communication Data Layout Descriptions (1506.09100). arXiv. https://doi.org/10.48550/arXiv.1506.09100
  • On the Subexponential-Time Complexity of CSP / De Haan, R., Kanj, I., & Szeider, S. (2015). On the Subexponential-Time Complexity of CSP. Journal of Artificial Intelligence Research, 52, 203–234. https://doi.org/10.1613/jair.4540
  • Quantifier Reordering for QBF / Slivovsky, F., & Szeider, S. (2015). Quantifier Reordering for QBF. Journal of Automated Reasoning, 56(4), 459–477. https://doi.org/10.1007/s10817-015-9353-1
  • Model Counting for CNF Formulas of Bounded Modular Treewidth / Paulusma, D., Slivovsky, F., & Szeider, S. (2015). Model Counting for CNF Formulas of Bounded Modular Treewidth. Algorithmica, 76(1), 168–194. https://doi.org/10.1007/s00453-015-0030-x
  • Model Checking Existential Logic on Partially Ordered Sets / Bova, S., Ganian, R., & Szeider, S. (2015). Model Checking Existential Logic on Partially Ordered Sets. ACM Transactions on Computational Logic, 17(2), 1–35. https://doi.org/10.1145/2814937
  • Parameterized and subexponential-time complexity ofsatisfiability problems and applications / Kanj, I., & Szeider, S. (2015). Parameterized and subexponential-time complexity ofsatisfiability problems and applications. Theoretical Computer Science, 607, 282–295. https://doi.org/10.1016/j.tcs.2015.08.029
  • Backdoors to Normality for Disjunctive Logic Programs / Fichte, J. K., & Szeider, S. (2015). Backdoors to Normality for Disjunctive Logic Programs. ACM Transactions on Computational Logic, 17(1), 1–23. https://doi.org/10.1145/2818646
    Project: START (2014–2022)
  • A SAT Approach to Clique-Width / Heule, M. J. H., & Szeider, S. (2015). A SAT Approach to Clique-Width. ACM Transactions on Computational Logic, 16(3), 1–27. https://doi.org/10.1145/2736696
  • Backdoors to tractable answer-set programming / Fichte, J. K., & Szeider, S. (2015). Backdoors to tractable answer-set programming. Artificial Intelligence, 220, 64–103. https://doi.org/10.1016/j.artint.2014.12.001
    Project: START (2014–2022)
  • A Survey on Parameterized Complexity and SAT / Szeider, S. (2015). A Survey on Parameterized Complexity and SAT. Dagstuhl Seminar, Dagstuhl, Deutschland, EU. http://hdl.handle.net/20.500.12708/86232
  • Solving Problems on Graphs of High Rank-Width / Eiben, E., Ganian, R., & Szeider, S. (2015). Solving Problems on Graphs of High Rank-Width. In Proceedings of the 14th International Symposium on Algorithms and Data Structures (pp. 314–326). LNCS. http://hdl.handle.net/20.500.12708/56453
  • Community Structure Inspired Algorithms for SAT and #SAT / Ganian, R., & Szeider, S. (2015). Community Structure Inspired Algorithms for SAT and #SAT. In Proceedings of the 18th International Conference on Theory and Applications of Satisfiability Testing (pp. 223–238). LNCS / Springer. http://hdl.handle.net/20.500.12708/56452
  • Algorithmic Applications of Tree-Cut Width / Ganian, R., Kim, E. J., & Szeider, S. (2015). Algorithmic Applications of Tree-Cut Width. In Proceedings of the 40th International Symposium Mathematical Foundations of Computer Science 2015 (pp. 348–361). http://hdl.handle.net/20.500.12708/56451
  • Parameterized Complexity Results for Agenda Safety in Judgment Aggregation / de Haan, R., Endriss, U., & Szeider, S. (2015). Parameterized Complexity Results for Agenda Safety in Judgment Aggregation. In G. Weiss, P. Yolum, R. H. Bordini, & E. Elkind (Eds.), Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems - AAMAS 2015 (pp. 127–136). http://hdl.handle.net/20.500.12708/56187
  • Machine Characterizations for Parameterized Complexity Classes Beyond Para-NP / de Haan, R., & Szeider, S. (2015). Machine Characterizations for Parameterized Complexity Classes Beyond Para-NP. In G. F. Italiano, T. Margaria, J. Pokorný, J.-J. Quisquater, & R. Wattenhofer (Eds.), Lecture Notes in Computer Science. LNCS. https://doi.org/10.1007/978-3-662-46078-8

2014

2013

  • Parameterized Complexity and Kernel Bounds for Hard Planning Problems / Bäckström, C., Jonsson, P., Ordyniak, S., & Szeider, S. (2013). Parameterized Complexity and Kernel Bounds for Hard Planning Problems. In P. G. Spirakis & M. Serna (Eds.), Lecture Notes in Computer Science. Springer / LNCS. https://doi.org/10.1007/978-3-642-38233-8
    Project: Complex Reason (2010–2014)
  • Variable Dependencies and Q-Resolution / Slivovsky, F., & Szeider, S. (2013). Variable Dependencies and Q-Resolution. In F. Lonsing & M. Seidl (Eds.), International Workshop on Quantified Boolean Formulas 2013 Informal Workshop Report (pp. 22–29). http://hdl.handle.net/20.500.12708/54888
    Project: Complex Reason (2010–2014)
  • Parameterized Complexity Results for Exact Bayesian Network Structure Learning / Ordyniak, S., & Szeider, S. (2013). Parameterized Complexity Results for Exact Bayesian Network Structure Learning. Journal of Artificial Intelligence Research, 46, 263–302. https://doi.org/10.1613/jair.3744
    Project: Complex Reason (2010–2014)
  • Satisfiability of acyclic and almost acyclic CNF formulas / Ordyniak, S., Paulusma, D., & Szeider, S. (2013). Satisfiability of acyclic and almost acyclic CNF formulas. Theoretical Computer Science, 481, 85–99. https://doi.org/10.1016/j.tcs.2012.12.039
    Project: Complex Reason (2010–2014)
  • Upper and Lower Bounds for Weak Backdoor Set Detection / Misra, N., Ordyniak, S., Raman, V., & Szeider, S. (2013). Upper and Lower Bounds for Weak Backdoor Set Detection. In M. Järvisalo & A. Van Gelder (Eds.), Lecture Notes in Computer Science. Springer / LNCS. https://doi.org/10.1007/978-3-642-39071-5
    Project: Complex Reason (2010–2014)
  • Backdoors to q-Horn / Gaspers, S., Ordyniak, S., Ramanujan, M. S., Saurabh, S., & Szeider, S. (2013). Backdoors to q-Horn. In N. Portier & T. Wilke (Eds.), 30th Symposium on Theoretical Aspects of Computer Science (STACS´13) (pp. 67–79). Dagstuhl Publishing. http://hdl.handle.net/20.500.12708/54875
    Project: Complex Reason (2010–2014)
  • Strong Backdoors to Bounded Treewidth SAT / Gaspers, S., & Szeider, S. (2013). Strong Backdoors to Bounded Treewidth SAT. In O. Reingold (Ed.), 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. IEEE. https://doi.org/10.1109/focs.2013.59
    Project: Complex Reason (2010–2014)
  • The Parameterized Complexity of Constraint Satisfaction and Reasoning / Szeider, S. (2013). The Parameterized Complexity of Constraint Satisfaction and Reasoning. In H. Tompits, S. Abreu, J. Oetsch, J. Pührer, D. Seipel, M. Umeda, & A. Wolf (Eds.), Applications of Declarative Programming and Knowledge Management (pp. 27–37). Springer / LNCS. https://doi.org/10.1007/978-3-642-41524-1_2
    Project: Complex Reason (2010–2014)
  • Revisiting Space in Proof Complexity: Treewidth and Pathwidth / Müller, M., & Szeider, S. (2013). Revisiting Space in Proof Complexity: Treewidth and Pathwidth. In K. Chatterjee & J. Sgall (Eds.), Mathematical Foundations of Computer Science 2013 (pp. 704–716). Springer / LNCS. https://doi.org/10.1007/978-3-642-40313-2_62
    Project: Complex Reason (2010–2014)
  • SAT Approach to Clique-Width / Szeider, S. (2013). SAT Approach to Clique-Width. Workshop on Graph Classes, Optimization, and Width Parameters (GROW), Santorini Island, Greece, EU. http://hdl.handle.net/20.500.12708/85669
    Project: Complex Reason (2010–2014)
  • Parameterized Complexity / Szeider, S. (2013). Parameterized Complexity. the International SAT/SMT Summer School, Espoo, Finland, EU. http://hdl.handle.net/20.500.12708/85668
    Project: Complex Reason (2010–2014)
  • Model Counting for Formulas of Bounded Clique-Width / Slivovsky, F., & Szeider, S. (2013). Model Counting for Formulas of Bounded Clique-Width. In L. Cai, S.-W. Cheng, & T.-W. Lam (Eds.), Algorithms and Computation (pp. 677–687). Springer / LNCS. https://doi.org/10.1007/978-3-642-45030-3_63
    Project: Complex Reason (2010–2014)
  • Model Counting for CNF Formulas of Bounded Modular Treewidth / Paulusma, D., Slivovsky, F., & Szeider, S. (2013). Model Counting for CNF Formulas of Bounded Modular Treewidth. In N. Portier & T. Wilke (Eds.), 30th Symposium on Theoretical Aspects of Computer Science (STACS´13) (pp. 55–66). Dagstuhl Publishing. http://hdl.handle.net/20.500.12708/54874
    Project: Complex Reason (2010–2014)
  • A SAT Approach to Clique-Width / Heule, M., & Szeider, S. (2013). A SAT Approach to Clique-Width. In M. Järvisalo & A. Van Gelder (Eds.), Lecture Notes in Computer Science. Springer / LNCS. https://doi.org/10.1007/978-3-642-39071-5
    Project: Complex Reason (2010–2014)
  • Local Backbones / de Haan, R., Kanj, I., & Szeider, S. (2013). Local Backbones. In M. Järvisalo & A. Van Gelder (Eds.), Lecture Notes in Computer Science. LNCS / Springer. https://doi.org/10.1007/978-3-642-39071-5
    Project: Complex Reason (2010–2014)
  • On the Subexponential Time Complexity of CSP / Kanj, I., & Szeider, S. (2013). On the Subexponential Time Complexity of CSP. In M. desJardins & M. Littman (Eds.), Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI´13) (pp. 459–465). AAAI Press. http://hdl.handle.net/20.500.12708/54867
    Project: Complex Reason (2010–2014)
  • Meta-kernelization with Structural Parameters / Ganian, R., Slivovsky, F., & Szeider, S. (2013). Meta-kernelization with Structural Parameters. In K. Chatterjee & J. Sgall (Eds.), Mathematical Foundations of Computer Science 2013 (pp. 457–468). Springer / LNCS. https://doi.org/10.1007/978-3-642-40313-2_41
    Project: Complex Reason (2010–2014)
  • Backdoors to Normality for Disjunctive Logic Programs / Fichte, J., & Szeider, S. (2013). Backdoors to Normality for Disjunctive Logic Programs. In M. desJardins & M. Littman (Eds.), Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI´13) (pp. 320–327). AAAI Press. http://hdl.handle.net/20.500.12708/54865
    Project: Complex Reason (2010–2014)
  • Parameterized Complexity Results for Plan Reuse / de Haan, R., Roubickova, A., & Szeider, S. (2013). Parameterized Complexity Results for Plan Reuse. In M. desJardins & M. Littman (Eds.), Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI´13) (pp. 224–231). AAAI Press. http://hdl.handle.net/20.500.12708/54863
    Project: Complex Reason (2010–2014)
  • Backdoors to Abduction / Pfandler, A., Rümmele, S., & Szeider, S. (2013). Backdoors to Abduction. In F. Rossi (Ed.), Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (pp. 1046–1052). AAAI Press. http://hdl.handle.net/20.500.12708/54790
    Projects: Complex Reason (2010–2014) / FAIR (2013–2018)
  • Capturing Structure in Hard Combinatorial Problems. / Szeider, S. (2013). Capturing Structure in Hard Combinatorial Problems. In Proceedings of the International Conference on Tools with Artificial Intelligence (ICTAI). The IEEE International Conference on Tools with Artificial Intelligence, Special Track on SAT and CSP Technologies (ICTAI), Washington D.C., USA, Non-EU. http://hdl.handle.net/20.500.12708/54879
    Project: Complex Reason (2010–2014)
  • Declarative Dynamic Programming as an Alternative Realization of Courcelle’s Theorem / Bliem, B., Pichler, R., & Woltran, S. (2013). Declarative Dynamic Programming as an Alternative Realization of Courcelle’s Theorem. In G. Gutin & S. Szeider (Eds.), Parameterized and Exact Computation (pp. 28–40). Springer. https://doi.org/10.1007/978-3-319-03898-8_4
    Project: D-Flat (2013–2017)
  • MFCS & CSL 2010 Satellite Workshops: Selected Papers, Fundamenta Informaticae 123 / MFCS & CSL 2010 Satellite Workshops: Selected Papers, Fundamenta Informaticae 123. (2013). In A. Kucera, I. Potapov, A. Ciabattoni, S. Szeider, & R. Freivalds (Eds.), Fundamenta Informaticae. IOS Press. http://hdl.handle.net/20.500.12708/23747
    Project: Complex Reason (2010–2014)
  • Parameterized and Exact Computation, 8th International Symposium, IPEC 2013 (LNCS 8246) / Gutin, G., & Szeider, S. (Eds.). (2013). Parameterized and Exact Computation, 8th International Symposium, IPEC 2013 (LNCS 8246). Springer-Verlag. http://hdl.handle.net/20.500.12708/23746
    Project: Complex Reason (2010–2014)

2012

  • The Complexity of Planning Revisited - A Parameterized Analysis / Bäckström, C., Chen, Y., Jonsson, P., Ordyniak, S., & Szeider, S. (2012). The Complexity of Planning Revisited - A Parameterized Analysis. In J. Hoffmann & B. Selman (Eds.), Proceedings of the 26th Conference on Artificial Intelligence (AAAI 2012) (pp. 1735–1741). AAAI Press. http://hdl.handle.net/20.500.12708/54314
    Project: Complex Reason (2010–2014)
  • The Added Value of Argumentation / Modgil, S., Toni, F., Bex, F., Bratko, I., Chesñevar, C. I., Dvořák, W., Falappa, M. A., Fan, X., Gaggl, S. A., García, A. J., González, M. P., Gordon, T. F., Leite, J., Možina, M., Reed, C., Simari, G. R., Szeider, S., Torroni, P., & Woltran, S. (2012). The Added Value of Argumentation. In S. Ossowski (Ed.), Agreement Technologies (pp. 357–403). Springer Netherlands. https://doi.org/10.1007/978-94-007-5583-3_21
  • Backdoors to Satisfaction / Gaspers, S., & Szeider, S. (2012). Backdoors to Satisfaction. In H. L. Bodlaender, R. G. Downey, F. Fomin, & D. Marx (Eds.), The Multivariate Algorithmic Revolution and Beyond (pp. 287–317). Springer LNCS. https://doi.org/10.1007/978-3-642-30891-8_15
    Project: Complex Reason (2010–2014)
  • Tractable Answer-Set Programming with Weight Constraints: Bounded Treewidth is not Enough / Pichler, R., Rümmele, S., Szeider, S., & Woltran, S. (2012). Tractable Answer-Set Programming with Weight Constraints: Bounded Treewidth is not Enough. CoRR - Computing Research Repository. http://hdl.handle.net/20.500.12708/163667
    Project: TTPC (2008–2012)
  • Editing Graphs to Satisfy Degree Constraints: A Parameterized Approach / Mathieson, L., & Szeider, S. (2012). Editing Graphs to Satisfy Degree Constraints: A Parameterized Approach. Journal of Computer and System Sciences, 78(1), 179–191. https://doi.org/10.1016/j.jcss.2011.02.001
  • On Graph Contractions and Induced Minors / van ’t Hof, P., Kamiński, M., Paulusma, D., Szeider, S., & Thilikos, D. M. (2012). On Graph Contractions and Induced Minors. Discrete Applied Mathematics, 160(6), 799–809. https://doi.org/10.1016/j.dam.2010.05.005
    Project: Complex Reason (2010–2014)
  • Parameterized Complexity Results for General Factors in Bipartite Graphs with an Application to Constraint Programming / Gutin, G., Kim, E. J., Soleimanfallah, A., Szeider, S., & Yeo, A. (2012). Parameterized Complexity Results for General Factors in Bipartite Graphs with an Application to Constraint Programming. Algorithmica, 64(1), 112–125. https://doi.org/10.1007/s00453-011-9548-8
    Project: Complex Reason (2010–2014)
  • Tractable Answer-Set Programming with Weight Constraints: Bounded Treewidth is not Enough / PICHLER, R., RÜMMELE, S., SZEIDER, S., & WOLTRAN, S. (2012). Tractable Answer-Set Programming with Weight Constraints: Bounded Treewidth is not Enough. Theory and Practice of Logic Programming, 14(2), 141–164. https://doi.org/10.1017/s1471068412000099
    Project: Complex Reason (2010–2014)
  • Augmenting Tractable Fragments of Abstract Argumentation / Dvořák, W., Ordyniak, S., & Szeider, S. (2012). Augmenting Tractable Fragments of Abstract Argumentation. Artificial Intelligence, 186, 157–173. https://doi.org/10.1016/j.artint.2012.03.002
    Projects: Argu (2009–2012) / Complex Reason (2010–2014)
  • Parameterized Complexity / Szeider, S. (2012). Parameterized Complexity. The Logic and Interactions Winter School, CIRM, Marseille, France, EU. http://hdl.handle.net/20.500.12708/85423
    Project: Complex Reason (2010–2014)
  • The Parameterized Complexity of Propositional Satisfiability / Szeider, S. (2012). The Parameterized Complexity of Propositional Satisfiability. Statistical Mechanics of Unsatisfiability and Glasses, Ferry Stockholm-Mariehamn and Hotel Arkipelag, Mariehamn, Åland, EU. http://hdl.handle.net/20.500.12708/85422
    Project: Complex Reason (2010–2014)
  • Parameterized Complexity Results for Probabilistic Network Structure Learning / Szeider, S. (2012). Parameterized Complexity Results for Probabilistic Network Structure Learning. Workshop on Applications of Parameterized Algorithms and Complexit, Warwick, UK, EU. http://hdl.handle.net/20.500.12708/85421
    Project: Complex Reason (2010–2014)
  • dynPARTIX 2.0 - Dynamic Programming Argumentation Reasoning Tool / Charwat, G., & Dvorak, W. (2012). dynPARTIX 2.0 - Dynamic Programming Argumentation Reasoning Tool. In B. Verheij, S. Szeider, & S. Woltran (Eds.), Proceedings of Computational Models of Argument - Proceedings of COMMA 2012 (pp. 507–508). Frontiers in Artificial Intelligence and Applications / IOS Press. http://hdl.handle.net/20.500.12708/54497
    Project: Argu (2009–2012)
  • Comparing the Expressiveness of Argumentation Semantics / Dvorak, W., & Spanring, C. (2012). Comparing the Expressiveness of Argumentation Semantics. In B. Verheij, S. Szeider, & S. Woltran (Eds.), Proceedings of Computational Models of Argument - Proceedings of COMMA 2012 (pp. 261–272). Frontiers in Artificial Intelligence and Applications / IOS Press. http://hdl.handle.net/20.500.12708/54496
    Project: Argu (2009–2012)
  • Complexity of logic-based argumentation in Schaefer's framework / Egly, U., Creignou, N., & Schmidt, J. (2012). Complexity of logic-based argumentation in Schaefer’s framework. In B. Verheij, S. Szeider, & S. Woltran (Eds.), Computational Models of Argument (pp. 237–248). IOS Press. http://hdl.handle.net/20.500.12708/54461
    Project: Boolean (2011–2019)
  • Backdoors to Normality for Disjunctive Logic Programs / Fichte, J., & Szeider, S. (2012). Backdoors to Normality for Disjunctive Logic Programs. In Y. Lierler & M. Fink (Eds.), Proceedings of the 5th Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2012) (pp. 99–113). http://hdl.handle.net/20.500.12708/54323
    Project: Complex Reason (2010–2014)
  • Valued-Based Argumentation for Tree-like Value Graphs / Kim, E. J., & Ordyniak, S. (2012). Valued-Based Argumentation for Tree-like Value Graphs. In B. Verheij, S. Szeider, & S. Woltran (Eds.), Fourth International Conference on Computational Models of Argument (Comma 2012) (pp. 378–389). IOS Press. http://hdl.handle.net/20.500.12708/54321
    Projects: Complex Reason (2010–2014) / Complexity (2011–2013)
  • k-Gap Interval Graphs / Fomin, F. V., Gaspers, S., Golovach, P., Suchan, K., Szeider, S., van Leeuwen, E. J., Vatshelle, M., & Villanger, Y. (2012). k-Gap Interval Graphs. In D. Fernández-Baca (Ed.), LATIN 2012: Theoretical Informatics (pp. 350–361). Lecture Notes in Computer Science / Springer. https://doi.org/10.1007/978-3-642-29344-3_30
    Project: Complex Reason (2010–2014)
  • Strong Backdoors to Nested Satisfiability / Gaspers, S., & Szeider, S. (2012). Strong Backdoors to Nested Satisfiability. In A. Cimatti & R. Sebastiani (Eds.), Proceedings of the Fifteen International Conference on Theory and Applications of Satisfiability Testing (SAT 2012) (pp. 58–71). LNCS / Springer. http://hdl.handle.net/20.500.12708/54319
    Project: Complex Reason (2010–2014)
  • Computing Resolution-Path Dependencies in Linear Time , / Slivovsky, F., & Szeider, S. (2012). Computing Resolution-Path Dependencies in Linear Time ,. In A. Cimatti & R. Sebastiani (Eds.), Theory and Applications of Satisfiability Testing – SAT 2012 (pp. 58–71). LNCS / Springer. https://doi.org/10.1007/978-3-642-31612-8_6
    Project: Complex Reason (2010–2014)
  • Backdoors to Acyclic SAT / Gaspers, S., & Szeider, S. (2012). Backdoors to Acyclic SAT. In Automata, Languages, and Programming (pp. 363–374). Springer-Verlag. https://doi.org/10.1007/978-3-642-31594-7_31
    Project: Complex Reason (2010–2014)
  • Don't Be Strict in Local Search! / Gaspers, S., Kim, E. J., Ordyniak, S., Saurabh, S., & Szeider, S. (2012). Don’t Be Strict in Local Search! In J. Hoffmann & B. Selman (Eds.), Proceedings of the 26th Conference on Artificial Intelligence (AAAI 2012) (pp. 486–492). AAAI Press. http://hdl.handle.net/20.500.12708/54316
    Projects: Complex Reason (2010–2014) / Complexity (2011–2013)
  • On Finding Optimal Polytrees / Gaspers, S., Koivisto, M., Liedloff, M., Ordyniak, S., & Szeider, S. (2012). On Finding Optimal Polytrees. In J. Hoffmann & B. Selman (Eds.), Proceedings of the 26th Conference on Artificial Intelligence (AAAI 2012) (pp. 750–756). AAAI Press. http://hdl.handle.net/20.500.12708/54315
    Project: Complex Reason (2010–2014)
  • Abstract Argumentation via Monadic Second Order Logic / Dvořák, W., Szeider, S., & Woltran, S. (2012). Abstract Argumentation via Monadic Second Order Logic. In E. Hüllermeier, S. Link, T. Fober, & B. Seeger (Eds.), Lecture Notes in Computer Science (pp. 85–98). Lecture Notes in Computer Science / Springer. https://doi.org/10.1007/978-3-642-33362-0_7
    Projects: Argu (2009–2012) / Complex Reason (2010–2014)
  • Evaluating Abstract Dialectical Frameworks with ASP / Ellmauthaler, S., & Wallner, J. P. (2012). Evaluating Abstract Dialectical Frameworks with ASP. In B. Verheij, S. Szeider, & S. Woltran (Eds.), Proceedings of Computational Models of Argument - Proceedings of COMMA 2012 (pp. 505–506). IOS Press. http://hdl.handle.net/20.500.12708/54186
  • Computational Aspects of cf2 and stage2 Argumentation Semantics. / Dvorak, W., & Gaggl, S. (2012). Computational Aspects of cf2 and stage2 Argumentation Semantics. In B. Verheij, S. Szeider, & S. Woltran (Eds.), Proceedings of Fourth International Conference on Computational Models of Argument (pp. 273–284). “Frontiers in Artificial Intelligence and Applications” series/IOS Press. http://hdl.handle.net/20.500.12708/54177
  • Abstract Argumentation via Monadic Second Order Logic. / Dvorak, W., Szeider, S., & Woltran, S. (2012). Abstract Argumentation via Monadic Second Order Logic. (DBAI-TR-2012-79). http://hdl.handle.net/20.500.12708/37417
    Projects: Argu (2009–2012) / Complex Reason (2010–2014)
  • Fourth International Conference on Computational Models of Argument (COMMA 2012) / Verheij, B., Szeider, S., & Woltran, S. (Eds.). (2012). Fourth International Conference on Computational Models of Argument (COMMA 2012). IOS Press. http://hdl.handle.net/20.500.12708/23575
    Project: Complex Reason (2010–2014)

2011

2010

 

  • The Parameterized Complexity of Reasoning Problems
    2010 / ERC Europäischer Forschungsrat

Soon, this page will include additional information such as reference projects, activities as journal reviewer and editor, memberships in councils and committees, and other research activities.

Until then, please visit Stefan Szeider’s research profile in TISS .