TU Wien Informatics

Role

2025S

 

2024

2022

  • Dear Reviewers: Responses to Common Reviewer Critiques about Infant Neuroimaging Studies / Korom, M., Camacho, M. C., Filippi, C. A., Licandro, R., Moore, L. A., Dufford, A., Zöllei, L., Graham, A. M., Spann, M., Howell, B., Shultz, S., Scheinost, D., & FIT´NG. (2022). Dear Reviewers: Responses to Common Reviewer Critiques about Infant Neuroimaging Studies. Developmental Cognitive Neuroscience, 53, Article 101055. https://doi.org/10.1016/j.dcn.2021.101055
  • Modellierung und Simulation – Erstellen Sie Ihre eigenen Modelle / Zauner, G., & Weidinger, W. (2022). Modellierung und Simulation – Erstellen Sie Ihre eigenen Modelle. In S. Papp, W. Weidinger, K. Munro, B. Ortner, A. Cadonna, G. Langs, R. Licandro, M. Meir-Huber, D. Nikolić, Z. Toth, B. Vesela, R. Wazir, & G. Zauner (Eds.), Handbuch Data Science und KI: Mit Machine Learning und Datenanalyse Wert aus Daten generieren (pp. 379–421). https://doi.org/10.3139/9783446472457.012

2021

2020

  • Evolution Risk Prediction of Bone Lesions in Multiple Myeloma / Licandro, R., Hofmanninger, J., Perkonigg, M., Röhrich, S., Weber, M.-A., Wennmann, M., Kintzele, L., Piraud, M., Menze, B., & Langs, G. (2020). Evolution Risk Prediction of Bone Lesions in Multiple Myeloma. European Congress of Radiology 2020, Wien, Austria. http://hdl.handle.net/20.500.12708/87090
  • Maschinelles Lernen in der Radiologie: Begriffsbestimmung vom Einzelzeitpunkt bis zur Trajektorie / Langs, G., Attenberger, U., Licandro, R., Hofmanninger, J., Perkonigg, M., Zusag, M., Röhrich, S., Sobotka, D., & Prosch, H. (2020). Maschinelles Lernen in der Radiologie: Begriffsbestimmung vom Einzelzeitpunkt bis zur Trajektorie. Der Radiologe, 60(1), 6–14. https://doi.org/10.1007/s00117-019-00624-x
  • Evaluation of confound regression strategies for denoising in-utero resting-state functional MRI / Taymourtash, A., Schwartz, E., Nenning, K. H., Licandro, R., Sobotka, D., Diogo, M., Prayer, D., Kasprian, G., & Langs, G. (2020). Evaluation of confound regression strategies for denoising in-utero resting-state functional MRI. Organization for Human Brain Mapping (OHMB) 2020, Montreal, Canada. http://hdl.handle.net/20.500.12708/87092
  • Machine Learning in Medical Imaging / Licandro, R. (2020). Machine Learning in Medical Imaging. Summer School on Image Processing (SSIP) 2020, Szeged, Hungary. http://hdl.handle.net/20.500.12708/87093
  • Functional thalamocortical connectivity development revealed by in-utero resting state fMRI / Taymourtash, A., Schwartz, E., Nenning, K. H., Licandro, R., Sobotka, D., Diogo, M., Golland, P., Grant, E., Kasprian, G., Prayer, D., & Langs, G. (2020). Functional thalamocortical connectivity development revealed by in-utero resting state fMRI. In Utero-MRI Workshop, Oxford, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/87091
  • Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis / Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. (2020). In Y. Hu, R. Licandro, A. Noble, J. Hutter, S. Aylward, A. Melbourne, E. A. Turk, & J. Torrents Barrena (Eds.), Lecture Notes in Computer Science. Springer International Publishing. https://doi.org/10.1007/978-3-030-60334-2

2019

  • Reproducibility of Functional Connectivity Estimates in Motion Corrected Fetal fMRI / Sobotka, D., Licandro, R., Ebner, M., Ourselin, S., Kasprian, G., Prayer, D., & Langs, G. (2019). Reproducibility of Functional Connectivity Estimates in Motion Corrected Fetal fMRI. In Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis (pp. 123–132). Springer. https://doi.org/10.1007/978-3-030-32875-7_14
  • Whole-body MRI based lesion prediction in multiple myeloma / Licandro, R., Hofmanninger, J., Weber, M.-A., Menze, B., & Langs, G. (2019). Whole-body MRI based lesion prediction in multiple myeloma. Insights into Imaging, 10. http://hdl.handle.net/20.500.12708/57978
  • Asymmetric Cascade Networks for Focal Bone Lesion Prediction in Multiple Myeloma / Licandro, R., Hofmanninger, J., Perkonigg, M., Röhrich, S., Weber, M.-A., Wennmann, M., Kintzele, L., Piraud, M., Menze, B., & Langs, G. (2019). Asymmetric Cascade Networks for Focal Bone Lesion Prediction in Multiple Myeloma. In Medical Imaging with Deep Learning: MIDL 2019. International Conference on Medical Imaging with Deep Learning (MIDL), London, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/57975
  • GMM Interpolation for Blood Cell Cluster Alignment in Childhood Leukaemia / Licandro, R., Miloserdov, K., Reiter, M., & Kampel, M. (2019). GMM Interpolation for Blood Cell Cluster Alignment in Childhood Leukaemia. In A. Pichler, P. M. Roth, R. Sablatnig, G. Stübl, & M. Vincze (Eds.), Proceedings of the ARW & OAGM Workshop 2019 (pp. 179–182). Verlag der Technischen Universität Graz. https://doi.org/10.3217/978-3-85125-663-5-39
  • Preface PIPPI 2019 / Licandro, R., Hutter, J., Robinson, E., Christiaens, D., Turk, E. A., & Melbourne, A. (2019). Preface PIPPI 2019. In Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis (p. 10). Springer. http://hdl.handle.net/20.500.12708/57974

2018

  • Predicting Future Bone Infiltration Patterns in Multiple Myeloma / Licandro, R., Hofmanninger, J., Weber, M.-A., Menze, B., & Langs, G. (2018). Predicting Future Bone Infiltration Patterns in Multiple Myeloma. In W. Bai, G. Sanroma, G. Wu, B. C. Munsell, Y. Zhan, & P. Coupé (Eds.), Patch-Based Techniques in Medical Imaging. Patch-MI 2018 (pp. 76–84). Springer. https://doi.org/10.1007/978-3-030-00500-9_9
  • Monitoring Acute Lymphoblastic Leukaemia Therapy with Stacked Denoising Autoencoders / Scheithe, J., Licandro, R., Rota, P., Reiter, M., Diem, M., & Kampel, M. (2018). Monitoring Acute Lymphoblastic Leukaemia Therapy with Stacked Denoising Autoencoders. In Computer Aided Intervention and Diagnostics in Clinical and Medical Images. International Conference on Clinical and Medical Image Analysis (ICCMIA18), Tamilnadu, Indien, Non-EU. Springer. http://hdl.handle.net/20.500.12708/57569
  • Dimensionality reduction for analysis of functional connectivity in the developing human brain / Frauenstein, L., Nenning, K. H., Schwartz, E., Licandro, R., Bühler, K., & Langs, G. (2018). Dimensionality reduction for analysis of functional connectivity in the developing human brain. Forum of Neuroscience (11th FENS 2018), Berlin, Deutschland, EU. http://hdl.handle.net/20.500.12708/86781
  • Data Driven Treatment Response Assessment and Preterm, Perinatal, and Paediatric Image Analysis / Melbourne, A., Licandro, R., DiFranco, M., Rota, P., Gau, M., Kampel, M., Aughwane, R., Moeskops, T., Schwartz, E., Robinson, E., & Makropoulos, A. (Eds.). (2018). Data Driven Treatment Response Assessment and Preterm, Perinatal, and Paediatric Image Analysis. Springer. https://doi.org/10.1007/978-3-030-00807-9
  • Early Predictors of Bone Infiltration in Multiple Myeloma Patients from T2 weighted MRI images / Licandro, R., Hofmanninger, J., Weber, M.-A., Menze, B., & Langs, G. (2018). Early Predictors of Bone Infiltration in Multiple Myeloma Patients from T2 weighted MRI images. In Proceedings of the OAGM Workshop 2018 Medical Image Analysis (pp. 9–12). Verlag der Technischen Universität Graz. http://hdl.handle.net/20.500.12708/56022
  • Whole body image analysis for diagnosing patients with monoclonal plasma cell disorders / Licandro, R., Hofmanninger, J., Menze, B., Weber, M.-A., & Langs, G. (2018). Whole body image analysis for diagnosing patients with monoclonal plasma cell disorders. 7th International Conference on Pattern Recognition Applications and Methods (ICPRAM), Funchal, Portugal, EU. http://hdl.handle.net/20.500.12708/86780
  • Application of Machine Learning for Automatic MRD Assessment in Paediatric Acute Myeloid Leukaemia / Licandro, R., Reiter, M., Diem, M., Dworzak, M., Schumich, A., & Kampel, M. (2018). Application of Machine Learning for Automatic MRD Assessment in Paediatric Acute Myeloid Leukaemia. In Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods. 7th International Conference on Pattern Recognition Applications and Methods (ICPRAM), Funchal, Portugal, EU. ScitePress. https://doi.org/10.5220/0006595804010408
  • WGAN Latent Space Embeddings for Blast Identification in Childhood Acute Myeloid Leukaemia / Licandro, R., Schlegl, T., Reiter, M., Diem, M., Dworzak, M., Schumich, A., Langs, G., & Kampel, M. (2018). WGAN Latent Space Embeddings for Blast Identification in Childhood Acute Myeloid Leukaemia. In 2018 24th International Conference on Pattern Recognition (ICPR). 24th International Conference on Pattern Recognition (ICPR) 2018, Beijing, China, Non-EU. IEEE. https://doi.org/10.1109/icpr.2018.8546177

2017

2016

2015

2014