TU Wien Informatics

20 Years

Role

2024

2023

  • Hedonic diversity games: A complexity picture with more than two colors / Ganian, R., Hamm, T., Knop, D., Schierreich, Š., & Suchý, O. (2023). Hedonic diversity games: A complexity picture with more than two colors. Artificial Intelligence, 325, Article 104017. https://doi.org/10.1016/j.artint.2023.104017
  • Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth / Bergougnoux, B., Chekan, V., Ganian, R., Kanté, M. M., Mnich, M., Oum, S., Pilipczuk, M., & van Leeuwen, E. J. (2023). Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth. In I. L. Gørtz, M. Farach-Colton, S. J. Puglisi, & G. Herman (Eds.), 31st Annual European Symposium on Algorithms, ESA 2023 (pp. 1–18). Schloss-Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2023.18
  • Fixed-Parameter Algorithms for Computing {RAC} Drawings of Graphs / Brand, C., Ganian, R., Röder Sebastian, & Schager Florian. (2023). Fixed-Parameter Algorithms for Computing {RAC} Drawings of Graphs. In M. A. Bekos & M. Chimani (Eds.), Graph Drawing and Network Visualization : 31st International Symposium, GD 2023, Isola delle Femmine, Palermo, Italy, September 20–22, 2023, Revised Selected Papers, Part II (pp. 66–81). Springer. https://doi.org/10.1007/978-3-031-49275-4_5
  • Worbel: aggregating point labels into word clouds / Bhore, S., Ganian, R., Li, G., Nöllenburg, M., & Wulms, J. (2023). Worbel: aggregating point labels into word clouds. ACM Transactions on Spatial Algorithms and Systems, 9(3), Article 19. https://doi.org/10.1145/3603376
    Download: PDF (6.17 MB)
    Projects: HumAlgo (2018–2023) / Parameterisierte Analyse in der Künstlichen Intelligenz (2021–2026)
  • New Complexity-Theoretic Frontiers of Tractability for Neural Network Training / Brand, C., Ganian, R., & Rocton, M. T. (2023). New Complexity-Theoretic Frontiers of Tractability for Neural Network Training. In 37th Conference on Neural Information Processing Systems (NeurIPS 2023). NeurIPS 2023: Thirty-seventh Annual Conference on Neural Information Processing Systems, New Orleans, United States of America (the).
  • Maximizing Social Welfare in Score-Based Social Distance Games / Ganian, R., Hamm, T., Knop, D., Roy, S., Schierreich, Š., & Suchý, O. (2023). Maximizing Social Welfare in Score-Based Social Distance Games. In R. Verbrugge (Ed.), Proceedings Nineteenth conference on Theoretical Aspects of Rationality and Knowledge (pp. 272–286). https://doi.org/10.4204/EPTCS.379.22
  • On the parameterized complexity of clustering problems for incomplete data / Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2023). On the parameterized complexity of clustering problems for incomplete data. Journal of Computer and System Sciences, 134, 1–19. https://doi.org/10.1016/j.jcss.2022.12.001
  • Group Activity Selection with Few Agent Types / Ganian, R., Ordyniak, S., & Rahul, C. S. (2023). Group Activity Selection with Few Agent Types. Algorithmica, 85(5), 1111–1155. https://doi.org/10.1007/s00453-022-01058-z
  • Parameterized complexity of envy-free resource allocation in social networks / Eiben, E., Ganian, R., Hamm, T., & Ordyniak, S. (2023). Parameterized complexity of envy-free resource allocation in social networks. Artificial Intelligence, 315, Article 103826. https://doi.org/10.1016/j.artint.2022.103826
  • Structure-Aware Lower Bounds and Broadening the Horizon of Tractability for QBF / Fichte, J. K., Ganian, R., Hecher, M., Slivovsky, F., & Ordyniak, S. (2023). Structure-Aware Lower Bounds and Broadening the Horizon of Tractability for QBF. In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (pp. 1–14). IEEE. https://doi.org/10.1109/LICS56636.2023.10175675
  • A Structural Complexity Analysis of Synchronous Dynamical Systems / Eiben, E., Ganian, R., Hamm, T., & Korchemna, V. (2023). A Structural Complexity Analysis of Synchronous Dynamical Systems. In B. Williams, Y. Chen, & J. Neville (Eds.), Proceedings of the 37th AAAI Conference on Artificial Intelligence (pp. 6313–6321). AAAI Press. https://doi.org/10.1609/aaai.v37i5.25777
  • The Parameterized Complexity of Coordinated Motion Planning / Eiben, E., Ganian, R., & Kanj, I. (2023). The Parameterized Complexity of Coordinated Motion Planning. In E. Chambers & J. Gudmundsson (Eds.), 39th International Symposium on Computational Geometry, SoCG 2023 (pp. 1–16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2023.28
  • Consistency Checking Problems: A Gateway to Parameterized Sample Complexity / Ganian, R., Khazaliya, L., & Simonov, K. (2023). Consistency Checking Problems: A Gateway to Parameterized Sample Complexity. In N. Misra & M. Wahlström (Eds.), 18th International Symposium on Parameterized and Exact Computation (IPEC 2023) (pp. 1–17). Schloss-Dagstuhl - Leibniz Zentrum für Informatik. http://hdl.handle.net/20.500.12708/191150
  • The Parameterized Complexity of Network Microaggregation / Blažej, V., Ganian, R., Knop, D., Pokorný, J., Schierreich, Š., & Simonov, K. (2023). The Parameterized Complexity of Network Microaggregation. In B. Williams, Y. Chen, & J. Neville (Eds.), Proceedings of the 37th AAAI Conference on Artificial Intelligence (pp. 6262–6270). AAAI Press. https://doi.org/10.1609/aaai.v37i5.25771
  • Extending Orthogonal Planar Graph Drawings Is Fixed-Parameter Tractable / Bhore, S., Ganian, R., Khazaliya, L., Montecchiani, F., & Nöllenburg, M. (2023). Extending Orthogonal Planar Graph Drawings Is Fixed-Parameter Tractable. In E. Chambers & J. Gudmundsson (Eds.), 39th International Symposium on Computational Geometry (pp. 1–16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2023.18
  • A Parameterized Theory of PAC Learning / Brand, C., Ganian, R., & Simonov, K. (2023). A Parameterized Theory of PAC Learning. In B. Williams, Y. Chen, & J. Neville (Eds.), Proceedings of the AAAI Conference on Artificial Intelligence (pp. 6834–6841). AAAI Press. https://doi.org/10.1609/aaai.v37i6.25837
  • The Computational Complexity of Concise Hypersphere Classification / Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2023). The Computational Complexity of Concise Hypersphere Classification. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, & J. Scarlett (Eds.), Proceedings of the 40th International Conference on Machine Learning (pp. 9060–9070). http://hdl.handle.net/20.500.12708/188983
  • From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem / Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2023). From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem. In N. Misra & M. Wahlström (Eds.), 18th International Symposium on Parameterized and Exact Computation (IPEC 2023) (pp. 1–14). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.IPEC.2023.16

2022

2021

  • Stable Matchings with Diversity Constraints: Affirmative Action is beyond NP / Chen, J., Ganian, R., & Hamm, T. (2021). Stable Matchings with Diversity Constraints: Affirmative Action is beyond NP. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (pp. 1–7). http://hdl.handle.net/20.500.12708/55573
  • The Complexity of Object Association in Multiple Object Tracking / Ganian, R., Hamm, T., & Ordyniak, S. (2021). The Complexity of Object Association in Multiple Object Tracking. In The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21) (pp. 1388–1396). AAAI Press. http://hdl.handle.net/20.500.12708/58619
  • Crossing-Optimal Extension of Simple Drawings / Ganian, R., Hamm, T., Klute, F., Parada, I., & Vogtenhuber, B. (2021). Crossing-Optimal Extension of Simple Drawings. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021) (pp. 1–17). LIPICS. https://doi.org/10.4230/LIPIcs.ICALP.2021.72
  • Measuring what matters: Ahybrid approach to dynamic programming with treewidth / Eiben, E., Ganian, R., Hamm, T., & Kwon, O. (2021). Measuring what matters: Ahybrid approach to dynamic programming with treewidth. Journal of Computer and System Sciences, 121, 57–75. https://doi.org/10.1016/j.jcss.2021.04.005
  • The Parameterized Complexity of Connected Fair Division / Deligkas, A., Eiben, E., Ganian, R., Hamm, T., & Ordyniak, S. (2021). The Parameterized Complexity of Connected Fair Division. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. IJCAI 2021 - 30th International Joint Conference on Artificial Intelligence, Montreal, Canada, Canada. https://doi.org/10.24963/ijcai.2021/20
  • The Complexity Landscape of Resource-Constrained Scheduling / Ganian, R., Hamm, T., & Mescoff, G. (2021). The Complexity Landscape of Resource-Constrained Scheduling. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. IJCAI 2020, Yokohama, Japan. https://doi.org/10.24963/ijcai.2020/241
  • Threshold Treewidth and Hypertree Width / Ganian, R., Schidler, A., Sorge, M., & Szeider, S. (2021). Threshold Treewidth and Hypertree Width. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. IJCAI’20: Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan. https://doi.org/10.24963/ijcai.2020/263
  • Graphs with Two Moplexes / Dallard, C., Ganian, R., Hatzel, M., Krnc, M., & Milanič, M. (2021). Graphs with Two Moplexes. In Proceedings of the XI Latin and American Algorithms, Graphs and Optimization Symposium (pp. 248–256). Elsevier. https://doi.org/10.1016/j.procs.2021.11.031
    Download: PDF (344 KB)
    Project: Parameterisierte Analyse in der Künstlichen Intelligenz (2021–2026)
  • Parameterized Complexity in Graph Drawing / Ganian, R., Montecchiani, F., Nöllenburg, M., & Zehavi, M. (2021). Parameterized Complexity in Graph Drawing. In Seminar on Parameterized Complexity in Graph Drawing (pp. 82–123). Dagstuhl Reports. https://doi.org/10.4230/DagRep.11.6.82
  • The Complexity of Bayesian Network Learning: Revisiting the Superstructure / Ganian, R., & Korchemna, V. (2021). The Complexity of Bayesian Network Learning: Revisiting the Superstructure. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), Advances in Neural Information Processing Systems 34 (NeurIPS 2021) (pp. 430–442). Curran Associates, Inc. https://doi.org/10.34726/3905
    Download: PDF (645 KB)
    Projects: NFPC (2018–2022) / Parameterisierte Analyse in der Künstlichen Intelligenz (2021–2026)
  • Worbel: Aggregating Point Labels intoWord Clouds / Bhore, S., Ganian, R., Li, G., Nöllenburg, M., & Wulms, J. (2021). Worbel: Aggregating Point Labels intoWord Clouds. In Proceedings of the 29th International Conference on Advances in Geographic Information Systems. SIGSPATIAL ’21: 29th International Conference on Advances in Geographic Information Systems, Beijing, China. ACM. https://doi.org/10.1145/3474717.3483959
  • The Parameterized Complexity of Clustering Incomplete Data / Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2021). The Parameterized Complexity of Clustering Incomplete Data. In Thirty-Fifth AAAI Conference on Artificial Intelligence (pp. 7296–7304). AAAI Press. http://hdl.handle.net/20.500.12708/58587
  • On Strict (Outer-)Confluent Graphs / Förster, H., Ganian, R., Klute, F., & Nöllenburg, M. (2021). On Strict (Outer-)Confluent Graphs. Journal of Graph Algorithms and Applications, 25(1), 481–512. https://doi.org/10.7155/jgaa.00568
  • The complexity landscape of decompositional parameters for ILP: Programs with few global variables and constraints / Dvořák, P., Eiben, E., Ganian, R., Knop, D., & Ordyniak, S. (2021). The complexity landscape of decompositional parameters for ILP: Programs with few global variables and constraints. Artificial Intelligence, 300(103561), 103561. https://doi.org/10.1016/j.artint.2021.103561
  • On Structural Parameterizations of the Edge Disjoint Paths Problem / Ganian, R., Ordyniak, S., & Ramanujan, M. S. (2021). On Structural Parameterizations of the Edge Disjoint Paths Problem. Algorithmica, 83(6), 1605–1637. https://doi.org/10.1007/s00453-020-00795-3
  • New width parameters for SAT and #SAT / Ganian, R., & Szeider, S. (2021). New width parameters for SAT and #SAT. Artificial Intelligence, 295(103460), 103460. https://doi.org/10.1016/j.artint.2021.103460

2020

2019

  • Parameterized Complexity Results for the Completion and Clustering of Incomplete Data / Szeider, S., Ganian, R., Kanj, I., & Ordyniak, S. (2019). Parameterized Complexity Results for the Completion and Clustering of Incomplete Data. Kocoon Workshop, Arras, France. http://hdl.handle.net/20.500.12708/86961
  • On Strict (Outer-)Confluent Graphs / Förster, H., Ganian, R., Klute, F., & Nöllenburg, M. (2019). On Strict (Outer-)Confluent Graphs. In Graph Drawing and Network Visualization. GD 2019 (pp. 147–161). Springer. https://doi.org/10.1007/978-3-030-35802-0_12
  • Parameterized Algorithms for Book Embedding Problems / Bhore, S., Ganian, R., Montecchiani, F., & Nöllenburg, M. (2019). Parameterized Algorithms for Book Embedding Problems. In Graph Drawing and Network Visualization. GD 2019 (pp. 365–378). Springer. https://doi.org/10.1007/978-3-030-35802-0_28
  • SAT-Encodings for Treecut Width and Treedepth / Ganian, R., Lodha, N., Ordyniak, S., & Szeider, S. (2019). SAT-Encodings for Treecut Width and Treedepth. In S. G. Kobourov & H. Meyerhenke (Eds.), Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM. https://doi.org/10.1137/1.9781611975499
  • Parameterized Complexity of Asynchronous Border Minimization / Ganian, R., Kronegger, M., Pfandler, A., & Popa, A. (2019). Parameterized Complexity of Asynchronous Border Minimization. Algorithmica, 81(1), 201–223. https://doi.org/10.1007/s00453-018-0442-5
    Projects: FAIR (2013–2018) / START (2014–2022) / X-TRACT (2014–2018)

2018

  • Measuring and exploiting structure to solve hard problems / Ganian, R. (2018). Measuring and exploiting structure to solve hard problems [Professorial Dissertation, Technische Universität]. reposiTUm. http://hdl.handle.net/20.500.12708/159420
  • A Structural Approach to Activity Selection / Eiben, E., Ganian, R., & Ordyniak, S. (2018). A Structural Approach to Activity Selection. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (pp. 203–209). International Joint Conferences on Artificial Intelligence. http://hdl.handle.net/20.500.12708/57663
  • Small Resolution Proofs for QBF using Dependency Treewidth / Eiben, E., Ganian, R., & Ordyniak, S. (2018). Small Resolution Proofs for QBF using Dependency Treewidth. In Proceedings of the 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France (pp. 1–14). 35th Symposium on Theoretical Aspects of Computer Science. http://hdl.handle.net/20.500.12708/57665
  • On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem / Ganian, R., Klute, F., & Ordyniak, S. (2018). On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem. In Proceedings of the 35th Symposium on Theoretical Aspects of Computer Science (pp. 1–14). 35th Symposium on Theoretical Aspects of Computer Science. http://hdl.handle.net/20.500.12708/57666
  • On the Complexity of Rainbow Coloring Problems / Eiben, E., Ganian, R., & Lauri, J. (2018). On the Complexity of Rainbow Coloring Problems. Discrete Applied Mathematics, 246, 38–48. https://doi.org/10.1016/j.dam.2016.10.021
  • A single-exponential fixed-parameter algorithm for distance-hereditary vertex deletion / Eiben, E., Ganian, R., & Kwon, O. (2018). A single-exponential fixed-parameter algorithm for distance-hereditary vertex deletion. Journal of Computer and System Sciences, 97, 121–146. https://doi.org/10.1016/j.jcss.2018.05.005
  • The Complexity Landscape of Decompositional Parameters for ILP / Ganian, R., & Ordyniak, S. (2018). The Complexity Landscape of Decompositional Parameters for ILP. Artificial Intelligence, 257, 61–71. https://doi.org/10.1016/j.artint.2017.12.006
  • Meta-kernelization using well-structured modulators / Eiben, E., Ganian, R., & Szeider, S. (2018). Meta-kernelization using well-structured modulators. Discrete Applied Mathematics, 248, 153–167. https://doi.org/10.1016/j.dam.2017.09.018
  • Unary Integer Linear Programming with Structural Restrictions / Eiben, E., Ganian, R., & Knop, D. (2018). Unary Integer Linear Programming with Structural Restrictions. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (pp. 1284–1290). International Joint Conferences on Artificial Intelligence. http://hdl.handle.net/20.500.12708/57664
  • Parameterized Algorithms for the Matrix Completion Problem / Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2018). Parameterized Algorithms for the Matrix Completion Problem. In Proceeding of ICML (pp. 1642–1651). Journal of Machine Learning Research. http://hdl.handle.net/20.500.12708/57440

2017

  • Towards a Polynomial Kernel for Directed Feedback Vertex Set / Bergnougnoux, B., Eiben, E., Ganian, R., Ordyniak, S., & Ramanujan, M. S. (2017). Towards a Polynomial Kernel for Directed Feedback Vertex Set. In Proceedings of the 42nd International Symposium on Mathematical Foundations of Computer Science (pp. 1–15). Proceedings of the 42nd International Symposium on Mathematical Foundations of Computer Science. http://hdl.handle.net/20.500.12708/57302
  • Going Beyond Primal Treewidth for (M)ILP / Ganian, R., Ordyniak, S., & Ramanujan, M. S. (2017). Going Beyond Primal Treewidth for (M)ILP. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (pp. 815–821). http://hdl.handle.net/20.500.12708/57013
  • Combining Treewidth and Backdoors for CSP / Ganian, R., Ramanujan, M. S., & Szeider, S. (2017). Combining Treewidth and Backdoors for CSP. In H. Vollmer & B. Vallée (Eds.), 34th Symposium on Theoretical Aspects of Computer Science (pp. 429–445). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. https://doi.org/10.4230/LIPIcs.STACS.2017.36
  • Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting / Ganian, R., Ramanujan, M. S., & Szeider, S. (2017). Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting. ACM Transactions on Algorithms, 13(2), 1–32. https://doi.org/10.1145/3014587
  • Solving Problems on Graphs of High Rank-Width / Eiben, E., Ganian, R., & Szeider, S. (2017). Solving Problems on Graphs of High Rank-Width. Algorithmica, 80(2), 742–771. https://doi.org/10.1007/s00453-017-0290-8
  • New Width Parameters for Model Counting / Ganian, R., & Szeider, S. (2017). New Width Parameters for Model Counting. In Theory and Applications of Satisfiability Testing – SAT 2017 (pp. 38–52). International Conference on Theory and Applications of Satisfiability Testing. https://doi.org/10.1007/978-3-319-66263-3_3
  • Backdoor Treewidth for SAT / Ganian, R., Ramanujan, M. S., & Szeider, S. (2017). Backdoor Treewidth for SAT. In Theory and Applications of Satisfiability Testing – SAT 2017 (pp. 20–37). Springer-Verlag. https://doi.org/10.1007/978-3-319-66263-3_2

2016

  • Meta-kernelization with structural parameters / Ganian, R., Slivovsky, F., & Szeider, S. (2016). Meta-kernelization with structural parameters. Journal of Computer and System Sciences, 82(2), 333–346. https://doi.org/10.1016/j.jcss.2015.08.003
  • Quantified conjunctive queries on partially ordered sets / Bova, S., Ganian, R., & Szeider, S. (2016). Quantified conjunctive queries on partially ordered sets. Theoretical Computer Science, 618, 72–84. https://doi.org/10.1016/j.tcs.2016.01.010
  • Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting / Ganian, R., Ramanujan, M. S., & Szeider, S. (2016). Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting. In R. Krauthgamer (Ed.), Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1670–1681). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611974331.ch114
  • Polynomial-Time Construction of Optimal MPI Derived Datatype Trees / Ganian, R., Kalany, M., Szeider, S., & Träff, J. L. (2016). Polynomial-Time Construction of Optimal MPI Derived Datatype Trees. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE 30th International Parallel and Distributed Processing Symposium (IPDPS 2016), Chicago, Illinois, USA, Non-EU. IEEE Computer Society. https://doi.org/10.1109/ipdps.2016.13
    Project: EPiGRAM (2013–2016)
  • A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex Deletion / Eiben, E., Ganian, R., & Kwon, O.-J. (2016). A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex Deletion. In Proceedings of the 41st International Symposium on Mathematical Foundations of Computer Science (pp. 1–14). http://hdl.handle.net/20.500.12708/56801
  • Counting Linear Extensions Parameterizations by Treewidth / Eiben, E., Ganian, R., Kangas, K., & Ordyniak, S. (2016). Counting Linear Extensions Parameterizations by Treewidth. In Proceedings of the 24th Annual European Symposium on Algorithms (pp. 1–18). http://hdl.handle.net/20.500.12708/56800
  • On the Complexity Landscape of Connected f-Factor Problems* / Ganian, R., Narayanaswamy, N. S., Ordyniak, S., Rahul, C. S., & Ramanujan, M. S. (2016). On the Complexity Landscape of Connected f-Factor Problems*. In Proceedings of the 41st International Symposium on Mathematical Foundations of Computer Science (pp. 1–14). http://hdl.handle.net/20.500.12708/56689
  • Using Decomposition-Parameters for QBF: Mind the Prefix! / Eiben, E., Ganian, R., & Ordyniak, S. (2016). Using Decomposition-Parameters for QBF: Mind the Prefix! In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (pp. 964–970). http://hdl.handle.net/20.500.12708/56686
  • The Complexity Landscape of Decompositional Parameters for ILP / Ganian, R., & Ordyniak, S. (2016). The Complexity Landscape of Decompositional Parameters for ILP. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (pp. 710–716). http://hdl.handle.net/20.500.12708/56685
  • On Existential MSO and its Relation to ETH / Ganian, R., de Haan, R., Kanj, I., & Szeider, S. (2016). On Existential MSO and its Relation to ETH. In Proceedings of the 41st International Symposium on Mathematical Foundations of Computer Science (pp. 1–14). http://hdl.handle.net/20.500.12708/56669
  • Backdoors to Tractable Valued CSP / Ganian, R., Ramanujan, M. S., & Szeider, S. (2016). Backdoors to Tractable Valued CSP. In Principles and Practice of Constraint Programming (Proceedings of 22nd CP) (pp. 233–250). LNCS. http://hdl.handle.net/20.500.12708/56665

2015

  • Improving Vertex Cover as a Graph Parameter / Ganian, R. (2015). Improving Vertex Cover as a Graph Parameter. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 17/2, 77–100. http://hdl.handle.net/20.500.12708/151557
  • Polynomial-time Construction of Optimal Tree-structured Communication Data Layout Descriptions / Ganian, R., Kalany, M., Szeider, S., & Träff, J. L. (2015). Polynomial-time Construction of Optimal Tree-structured Communication Data Layout Descriptions. arXiv. https://doi.org/10.48550/arXiv.1506.09100
  • Model Checking Existential Logic on Partially Ordered Sets / Bova, S., Ganian, R., & Szeider, S. (2015). Model Checking Existential Logic on Partially Ordered Sets. ACM Transactions on Computational Logic, 17(2), 1–35. https://doi.org/10.1145/2814937
  • FO Model Checking of Interval Graphs / Ganian, R., Hlineny, P., Kral, D., Obdrzalek, J., Schwartz, J., & Teska, J. (2015). FO Model Checking of Interval Graphs. Logical Methods in Computer Science, 11(4). https://doi.org/10.2168/lmcs-11(4:11)2015
  • Parameterized Complexity of Asynchronous Border Minimization / Ganian, R., Kronegger, M., Pfandler, A., & Popa, A. (2015). Parameterized Complexity of Asynchronous Border Minimization. In R. Jain, S. Jain, & F. Stephan (Eds.), Theory and Applications of Models of Computation : 12th Annual Conference, TAMC 2015, Singapore, May 18-20, 2015, Proceedings (pp. 428–440). Springer. https://doi.org/10.1007/978-3-319-17142-5_36
    Project: FAIR (2013–2018)
  • Meta-kernelization using Well-structured Modulators / Eiben, E., Ganian, R., & Szeider, S. (2015). Meta-kernelization using Well-structured Modulators. In T. Husfeldt & I. Kanj (Eds.), 10th International Symposium on Parameterized and Exact Computation (IPEC 2015) (pp. 114–126). LIPICs. https://doi.org/10.4230/LIPIcs.IPEC.2015.114
  • Well-Structured Modulators: FPT Algorithms and Kernels / Ganian, R. (2015). Well-Structured Modulators: FPT Algorithms and Kernels. Workshop on Graph Classes, Optimization, and Width Parameters (GROW), Santorini Island, Greece, EU. http://hdl.handle.net/20.500.12708/86165
  • Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting / Ganian, R. (2015). Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting. Contemporary Trends in Theoretical Computer Science 2015, Prag, Tschechien, EU. http://hdl.handle.net/20.500.12708/86164
  • Algorithmic Applications of Large Well-Structured Modulators / Ganian, R. (2015). Algorithmic Applications of Large Well-Structured Modulators. Algorithmic Model Theory Meeting 2015 - ALMOTH 2015, Bayreuth, Deutschland, EU. http://hdl.handle.net/20.500.12708/86163
  • Solving Problems on Graphs of High Rank-Width / Eiben, E., Ganian, R., & Szeider, S. (2015). Solving Problems on Graphs of High Rank-Width. In Proceedings of the 14th International Symposium on Algorithms and Data Structures (pp. 314–326). LNCS. http://hdl.handle.net/20.500.12708/56453
  • Community Structure Inspired Algorithms for SAT and #SAT / Ganian, R., & Szeider, S. (2015). Community Structure Inspired Algorithms for SAT and #SAT. In Proceedings of the 18th International Conference on Theory and Applications of Satisfiability Testing (pp. 223–238). LNCS / Springer. http://hdl.handle.net/20.500.12708/56452
  • Algorithmic Applications of Tree-Cut Width / Ganian, R., Kim, E. J., & Szeider, S. (2015). Algorithmic Applications of Tree-Cut Width. In Proceedings of the 40th International Symposium Mathematical Foundations of Computer Science 2015 (pp. 348–361). http://hdl.handle.net/20.500.12708/56451

2014

2013

  • Meta-Kernelization with Structural Parameters / Ganian, R. (2013). Meta-Kernelization with Structural Parameters. Contemporary Trends in Theoretical Computer Science (STTI 2013), Prague, Czech Republic, EU. http://hdl.handle.net/20.500.12708/85671
    Project: Complex Reason (2010–2014)
  • Meta-Kernelization with Structural Parameters / Ganian, R. (2013). Meta-Kernelization with Structural Parameters. Workshop on Graph Classes, Optimization, and Width Parameters (GROW), Santorini Island, Greece, EU. http://hdl.handle.net/20.500.12708/85670
    Project: Complex Reason (2010–2014)
  • Expanding the Expressive Power of Monadic Second-Order Logic on Restricted Graph Classes / Ganian, R., & Obdrálek, J. (2013). Expanding the Expressive Power of Monadic Second-Order Logic on Restricted Graph Classes. In T. Lecroq & L. Mouchard (Eds.), Combinatorial Algorithms - 24th International Workshop (pp. 164–177). Springer / LNCS. http://hdl.handle.net/20.500.12708/54878
    Project: Complex Reason (2010–2014)
  • FO Model Checking of Interval Graphs / Ganian, R., Hlinený, P., Král, D., Obdrálek, J., Schwartz, J., & Teska, J. (2013). FO Model Checking of Interval Graphs. In Automata, Languages, and Programming - 40th International Colloquium (pp. 250–262). Springer / LNCS. http://hdl.handle.net/20.500.12708/54877
    Project: Complex Reason (2010–2014)
  • Meta-kernelization with Structural Parameters / Ganian, R., Slivovsky, F., & Szeider, S. (2013). Meta-kernelization with Structural Parameters. In K. Chatterjee & J. Sgall (Eds.), Mathematical Foundations of Computer Science 2013 (pp. 457–468). Springer / LNCS. https://doi.org/10.1007/978-3-642-40313-2_41
    Project: Complex Reason (2010–2014)