Philipp Alexander Raith
Univ.Ass. Dipl.-Ing. / BSc
Role
-
PreDoc Researcher
Distributed Systems, E194-02
Courses
2024W
- Advanced Internet Computing / 184.269 / VU
- Distributed Systems / 194.024 / VU
- Project in Computer Science 1 / 194.145 / PR
- Project in Computer Science 2 / 194.146 / PR
- Seminar in Distributed Systems / 184.194 / SE
2025S
- Project in Computer Science 1 / 194.145 / PR
- Project in Computer Science 2 / 194.146 / PR
Projects
-
AUTOnomously Optimizing Cloud Applications
2013 – 2025 / AUTO-Cloud
Publications
- SimuScale: Optimizing Parameters for Autoscaling of Serverless Edge Functions Through Co-Simulation / Raith, P., Nastic, S., & Dustdar, S. (2024). SimuScale: Optimizing Parameters for Autoscaling of Serverless Edge Functions Through Co-Simulation. In 2024 IEEE 17th International Conference on Cloud Computing (CLOUD) (pp. 305–315). IEEE. https://doi.org/10.1109/CLOUD62652.2024.00042
- Opportunistic Energy-Aware Scheduling for Container Orchestration Platforms Using Graph Neural Networks / Raith, P., Rattihalli, G., Dhakal, A., Chalamalasetti, S. R., Milojicic, D., Frachtenberg, E., Nastic, S., & Dustdar, S. (2024). Opportunistic Energy-Aware Scheduling for Container Orchestration Platforms Using Graph Neural Networks. In 2024 IEEE 24th International Symposium on Cluster, Cloud and Internet Computing (CCGrid) (pp. 299–306). IEEE. https://doi.org/10.1109/CCGrid59990.2024.00042
-
faas‐sim: A trace‐driven simulation framework for serverless edge computing platforms
/
Raith, P. A., Rausch, T., Furutanpey, A., & Dustdar, S. (2023). faas‐sim: A trace‐driven simulation framework for serverless edge computing platforms. Software: Practice and Experience, 53(12), 2327–2361. https://doi.org/10.1002/spe.3277
Download: PDF (4.71 MB) - Intent-based Management for the Distributed Computing Continuum / Morichetta, A., Spring, N., Raith, P., & Dustdar, S. (2023). Intent-based Management for the Distributed Computing Continuum. In Proceedings : 17th IEEE International Conference on Service-Oriented System Engineering (IEEE SOSE 2023) (pp. 239–249). IEEE. https://doi.org/10.1109/SOSE58276.2023.00035
- Architectural Vision for Quantum Computing in the Edge-Cloud Continuum / Furutanpey, A., Barzen, J., Bechtold, M., Dustdar, S., Leymann, F., Raith, P., & Truger, F. (2023). Architectural Vision for Quantum Computing in the Edge-Cloud Continuum. In S. Ali, C. Ardagna, N. Atukorala, J. Barzen, C. K. Chang, Chang Rong N., J. Fan, I. Faro, S. Feld, G. Fox, Z. Jin, F. Leymann, F. Neukart, S. de la Puente, & M. Wimmer (Eds.), Proceedings of the IEEE International Conference on Quantum Software (IEEE QSW 2023) (pp. 88–103). IEEE. https://doi.org/10.1109/QSW59989.2023.00021
-
Architectural Vision for Quantum Computing in the Edge-Cloud Continuum
/
Furutanpey, A., Barzen, J., Bechtold, M., Dustdar, S., Leymann, F., Raith, P. A., & Truger, F. (2023). Architectural Vision for Quantum Computing in the Edge-Cloud Continuum. arXiv. https://doi.org/10.34726/5940
Download: PDF (3.23 MB) -
FrankenSplit: Efficient Neural Feature Compression with Shallow Variational Bottleneck Injection for Mobile Edge Computing
/
Furutanpey, A., Raith, P. A., & Dustdar, S. (2023). FrankenSplit: Efficient Neural Feature Compression with Shallow Variational Bottleneck Injection for Mobile Edge Computing. arXiv. https://doi.org/10.48550/arXiv.2302.10681
Download: PDF (3.65 MB) - Demystifying deep learning in predictive monitoring for cloud-native SLOs / Morichetta, A., Pusztai, T. W., Vij, D., Casamayor Pujol, V., Raith, P. A., Xiong, Y., Nastic, S., Dustdar, S., & Zhang, Z. (2023). Demystifying deep learning in predictive monitoring for cloud-native SLOs. In C. A. ARDAGNA, N. Atukorala, P. Beckmann, C. C. Chang, Chang Rong N., C. Evangelinos, J. Fan, G. Fox, J. Fox, C. Hagleitner, Z. Jin, T. Kosar, & M. Parashar (Eds.), 2023 IEEE 16th International Conference on Cloud Computing (CLOUD) (pp. 1–11). IEEE. https://doi.org/10.1109/CLOUD60044.2023.00013
-
Vela: A 3-Phase Distributed Scheduler for the Edge-Cloud Continuum
/
Pusztai, T., Nastic, S., Raith, P., Dustdar, S., Vij, D., & Xiong, Y. (2023). Vela: A 3-Phase Distributed Scheduler for the Edge-Cloud Continuum. In Proceedings 2023 IEEE International Conference on Cloud Engineering (IC2E 2023) (pp. 161–172). IEEE. https://doi.org/10.1109/IC2E59103.2023.00026
Project: RAINBOW (2020–2022) - Serverless Edge Computing—Where We Are and What Lies Ahead / Raith, P., Nastic, S., & Dustdar, S. (2023). Serverless Edge Computing—Where We Are and What Lies Ahead. IEEE Internet Computing, 27(3), 50–64. https://doi.org/10.1109/MIC.2023.3260939
-
Creating an SLO and Elasticity Strategy with the Polaris CLI
/
Pusztai, T. W., & Raith, P. A. (2022, June 21). Creating an SLO and Elasticity Strategy with the Polaris CLI [Presentation]. RAINBOW project: Workshop on Edge Orchestration, Vienna, Austria.
Project: RAINBOW (2020–2022) -
Polaris Framework: Creating and enforcing complex Service Level Objectives
/
Pusztai, T. W., & Raith, P. A. (2022, June 21). Polaris Framework: Creating and enforcing complex Service Level Objectives [Presentation]. RAINBOW project: Workshop on Edge Orchestration, Vienna, Austria.
Project: RAINBOW (2020–2022) -
Mobility-Aware Serverless Function Adaptations Across the Edge-Cloud Continuum
/
Raith, P., Rausch, T., Dustdar, S., Rossi, F., Cardellini, V., & Ranjan, R. (2022). Mobility-Aware Serverless Function Adaptations Across the Edge-Cloud Continuum. In Proceedings 2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC 2022) (pp. 123–132). IEEE. https://doi.org/10.1109/UCC56403.2022.00023
Project: RAINBOW (2020–2022) - An End-to-End Framework for Benchmarking Edge-Cloud Cluster Management Techniques / Raith, P., Rausch, T., Prüller, P., Furutanpey, A., & Dustdar, S. (2022). An End-to-End Framework for Benchmarking Edge-Cloud Cluster Management Techniques. In 2022 IEEE International Conference on Cloud Engineering (IC2E) (pp. 22–28). IEEE. https://doi.org/10.1109/IC2E55432.2022.00010
-
Polaris Scheduler: SLO- and Topology-aware Microservices Scheduling at the Edge
/
Pusztai, T., Nastic, S., Morichetta, A., Casamayor Pujol, V., Raith, P., Dustdar, S., Vij, D., Xiong, Y., & Zhang, Z. (2022). Polaris Scheduler: SLO- and Topology-aware Microservices Scheduling at the Edge. In Proceedings 2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC 2022) (pp. 61–70). IEEE. https://doi.org/10.1109/UCC56403.2022.00017
Project: RAINBOW (2020–2022) - A Serverless Computing Fabric for Edge & Cloud / Nastic, S., Raith, P., Furutanpey, A., Pusztai, T., & Dustdar, S. (2022). A Serverless Computing Fabric for Edge & Cloud. In Proceedings 2022 IEEE 4th International Conference on Cognitive Machine Intelligence (CogMI) (pp. 1–12). IEEE. https://doi.org/10.1109/CogMI56440.2022.00011
- Edge Intelligence as a Service / Raith, P., & Dustdar, S. (2021). Edge Intelligence as a Service. In B. Carminati, C. K. Chang, E. Damiani, S. Deng, W. Tan, Z. Wang, R. Ward, & J. Zhang (Eds.), 2021 IEEE International Conference on Services Computing (SCC). IEEE. https://doi.org/10.1109/scc53864.2021.00038
-
Container scheduling on heterogeneous clusters using machine learning-based workload characterization
/
Raith, P. A. (2021). Container scheduling on heterogeneous clusters using machine learning-based workload characterization [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.82862
Download: PDF (1.3 MB) - Towards a new paradigm for managing computing continuum applications / Casamayor Pujol, V., Raith, P., & Dustdar, S. (2021). Towards a new paradigm for managing computing continuum applications. In 2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI) (pp. 180–188). IEEE. https://doi.org/10.1109/cogmi52975.2021.00032
- Synthesizing Plausible Infrastructure Configurations for Evaluating Edge Computing Systems / Rausch, T., Lachner, C., Frangoudis, P. A., Raith, P., & Dustdar, S. (2020). Synthesizing Plausible Infrastructure Configurations for Evaluating Edge Computing Systems. In I. Ahmad & M. Zhao (Eds.), 3rd USENIX Workshop on Hot Topics in Edge Computing, HotEdge 2020. USENIX Association. http://hdl.handle.net/20.500.12708/58203
- A system for operating energy-aware cloudlets / Rausch, T., Raith, P., Pillai, P., & Dustdar, S. (2019). A system for operating energy-aware cloudlets. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing. Demo Session at the 4th ACM/IEEE Symposium on Edge Computing (SEC 2019), Arlington, Virginia, United States of America (the). ACM. https://doi.org/10.1145/3318216.3363325
Supervisions
-
Edge Inference using ML-based resource-aware offloading
/
Hampejs, S. (2024). Edge Inference using ML-based resource-aware offloading [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.97824
Download: PDF (1.7 MB) -
A benchmark suite for AI workloads in serverless edge computing
/
Prüller, P. (2024). A benchmark suite for AI workloads in serverless edge computing [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.104123
Download: PDF (20.6 MB) -
Recommendation for orchestration architectures in serverless edge computing
/
Pouresmaeil, K. (2024). Recommendation for orchestration architectures in serverless edge computing [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.113411
Download: PDF (50.4 MB) -
Personalized self-supervised learning for real-world human activity recognition
/
Huetter, S. (2023). Personalized self-supervised learning for real-world human activity recognition [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.109782
Download: PDF (1.61 MB) -
ML-based Power consumption prediction models for edge devices
/
Müller, T. C. (2023). ML-based Power consumption prediction models for edge devices [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.104122
Download: PDF (2.13 MB) -
Improving serverless edge computing for network bound workloads
/
Palecek, J. (2022). Improving serverless edge computing for network bound workloads [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2022.84900
Download: PDF (2.75 MB)