TU Wien Informatics

20 Years

Role

  • SAT Modulo Symmetries for Graph Generation and Enumeration / Kirchweger, M., & Szeider, S. (2024). SAT Modulo Symmetries for Graph Generation and Enumeration. ACM Transactions on Computational Logic, 25(3), Article 18. https://doi.org/10.1145/3670405
    Download: SAT Modulo Symmetries for Graph Generation and Enumeration (1.47 MB)
    Project: ASK-SAT (2024–2027)
  • Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries / Kirchweger, M., & Szeider, S. (2024). Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024) (pp. 37:1-37:11). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CP.2024.37
    Download: Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries (678 KB)
  • IPASIR-UP: User Propagators for CDCL / Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., & Biere, A. (2023). IPASIR-UP: User Propagators for CDCL. In M. Mahajan & F. Slivovsky (Eds.), 26th International Conference on Theory and Applications of Satisfiability Testing (pp. 8:1-8:13). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAT.2023.8
    Download: PDF (797 KB)
    Projects: INCR (2021–2024) / REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • SAT-Based Generation of Planar Graphs / Markus Kirchweger, Scheucher, M., & Szeider, S. (2023). SAT-Based Generation of Planar Graphs. In 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023). 26th International Conference on Theory and Applications of Satisfiability Testing (SAT), Alghero, Italy. Schloss-Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAT.2023.14
    Download: PDF (581 KB)
    Projects: REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • A SAT Solver's Opinion on the Erdos-Faber-Lovász Conjecture / Kirchweger, M., Peitl, T., & Szeider, S. (2023). A SAT Solver’s Opinion on the Erdos-Faber-Lovász Conjecture. In M. Mahajan (Ed.), 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023) (pp. 1–17). Schloss-Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAT.2023.13
    Download: PDF (651 KB)
    Projects: REVEAL-AI (2020–2024) / SLIM (2019–2024)
  • Dynamic symmetry breaking for SAT-encodings of combinatorial problems / Kirchweger, M. (2023). Dynamic symmetry breaking for SAT-encodings of combinatorial problems [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.98841
    Download: PDF (807 KB)
  • Co-Certificate Learning with SAT Modulo Symmetries / Kirchweger, M., Peitl, T., & Szeider, S. (2023). Co-Certificate Learning with SAT Modulo Symmetries. In E. Elkind (Ed.), Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23) (pp. 1944–1953). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2023/216
  • A SAT Attack on Rota’s Basis Conjecture / Kirchweger, M., Scheucher, M., & Szeider, S. (2022). A SAT Attack on Rota’s Basis Conjecture. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022) (pp. 1–18). Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH. https://doi.org/10.4230/LIPIcs.SAT.2022.4
    Download: PDF (704 KB)
    Project: SLIM (2019–2024)
  • A Beam Search for the Shortest Common Supersequence Problem Guided by an Approximate Expected Length Calculation / Mayerhofer, J., Kirchweger, M., Huber, M., & Raidl, G. (2022). A Beam Search for the Shortest Common Supersequence Problem Guided by an Approximate Expected Length Calculation. In Evolutionary Computation in Combinatorial Optimization (pp. 127–142). Springer Nature Switzerland AG. https://doi.org/10.34726/3442
    Download: PDF (434 KB)
  • SAT Modulo Symmetries for Graph Generation / Kirchweger, M., & Szeider, S. (2021). SAT Modulo Symmetries for Graph Generation. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021) (pp. 1–16). LIPICS. https://doi.org/10.4230/LIPIcs.CP.2021.34