Markus Bögl
Univ.Ass. Dipl.-Ing. Dr.techn. / BSc
Role
-
PostDoc Researcher
Visual Analytics, E193-07
Courses
2024W
- Bachelor Thesis / 193.136 / PR
- Information Visualization / 188.308 / UE
- Information Visualization / 188.305 / VO
- Interdisciplinary Project in Data Science / 194.147 / PR
- Project in Computer Science 1 / 193.117 / PR
- Project in Computer Science 2 / 193.118 / PR
- Project in Medical Informatics / 193.025 / PR
- Project in Visual Computing 1 / 193.023 / PR
- Project in Visual Computing 2 / 193.024 / PR
- Project Media and Human-Centered Computing 1 / 193.021 / PR
- Project Media and Human-Centered Computing 2 / 193.022 / PR
- Seminar Media and Human-Centered Computing Information Visualization, Visual Analytics, and Information Design / 193.063 / SE
- Seminar on Medical Informatics / 188.948 / SE
2025S
- Project in Medical Informatics / 193.025 / PR
- Project in Visual Computing 1 / 193.023 / PR
- Project in Visual Computing 2 / 193.024 / PR
- Project Media and Human-Centered Computing 1 / 193.021 / PR
- Project Media and Human-Centered Computing 2 / 193.022 / PR
Projects
Publications
2024
-
On Network Structural and Temporal Encodings: A Space and Time Odyssey
/
Filipov, V., Arleo, A., Bögl, M., & Miksch, S. (2024, October 16). On Network Structural and Temporal Encodings: A Space and Time Odyssey [Conference Presentation]. IEEE VIS 2024, Tampa, Florida, United States of America (the). https://doi.org/10.34726/7079
Download: Presentation Slides (1.59 MB)
Project: ArtVis (2022–2025) - Visual Interactive Parameter Selection for Temporal Blind Source Separation / Cappello, C., Piccolotto, N., Mühlmann, C., Bögl, M., Filzmoser, P., Miksch, S., & Nordhausen, K. (2024). Visual Interactive Parameter Selection for Temporal Blind Source Separation. Journal of Data Science, Statistics, and Visualisation, 4(3). https://doi.org/10.52933/jdssv.v4i3.82
2023
- Data Type Agnostic Visual Sensitivity Analysis / Piccolotto, N., Bogl, M., Muehlmann, C., Nordhausen, K., Filzmoser, P., Schmidt, J., & Miksch, S. (2023). Data Type Agnostic Visual Sensitivity Analysis. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2023.3327203
-
Data Type Agnostic Visual Sensitivity Analysis
/
Piccolotto, N., Bögl, M., Mühlmann, C., Nordhausen, K., Filzmoser, P., Schmidt, J., & Miksch, S. (2023, October 26). Data Type Agnostic Visual Sensitivity Analysis [Conference Presentation]. IEEE VIS 2023, Melbourne, Australia. http://hdl.handle.net/20.500.12708/189927
Project: GuidedVA (2020–2025) - Visual Parameter Space Exploration in Time and Space / Piccolotto, N., Bögl, M., & Miksch, S. (2023, June 14). Visual Parameter Space Exploration in Time and Space [Conference Presentation]. 25th EG Conference on Visualization (EuroVis 2023), Leipzig, Germany. http://hdl.handle.net/20.500.12708/187025
- Multi-Ensemble Visual Analytics via Fuzzy Sets / Piccolotto, N., Bögl, M., & Miksch, S. (2023, June 12). Multi-Ensemble Visual Analytics via Fuzzy Sets [Conference Presentation]. EuroVis Workshop on Visual Analytics (EuroVA 2023), Leipzig, Germany. http://hdl.handle.net/20.500.12708/187032
- Visual Parameter Space Exploration in Time and Space / Piccolotto, N., Bögl, M., & Miksch, S. (2023). Visual Parameter Space Exploration in Time and Space. Computer Graphics Forum, 2023. https://doi.org/10.1111/cgf.14785
- Multi-Ensemble Visual Analytics via Fuzzy Sets / Piccolotto, N., Bögl, M., & Miksch, S. (2023). Multi-Ensemble Visual Analytics via Fuzzy Sets. In M. Angelini & M. El-Assady (Eds.), EuroVis Workshop on Visual Analytics (EuroVA) (pp. 25–30). The Eurographics Association. https://doi.org/10.2312/eurova.20231092
-
On Time and Space: An Experimental Study on Graph Structural and Temporal Encodings
/
Filipov, V., Arleo, A., Bögl, M., & Miksch, S. (2023). On Time and Space: An Experimental Study on Graph Structural and Temporal Encodings. In P. Angelini & R. von Hanxleden (Eds.), Graph Drawing and Network Visualization. GD 2022 (pp. 271–288). Springer Cham. https://doi.org/10.1007/978-3-031-22203-0_20
Project: ArtVis (2022–2025) -
On network structural and temporal encodings: a space and time odyssey
/
Filipov, V., Arleo, A., Bögl, M., & Miksch, S. (2023). On network structural and temporal encodings: a space and time odyssey. IEEE Transactions on Visualization and Computer Graphics, 14(8). https://doi.org/10.34726/5410
Download: PDF (1.25 MB)
Project: ArtVis (2022–2025)
2022
- TBSSvis: Visual analytics for temporal blind source separation / Piccolotto, N., Bögl, M., Gschwandtner, T., Muehlmann, C., Nordhausen, K., Filzmoser, P., & Miksch, S. (2022). TBSSvis: Visual analytics for temporal blind source separation. Visual Informatics, 6(4), 51–66. https://doi.org/10.1016/j.visinf.2022.10.002
- Visual Parameter Selection for Spatial Blind Source Separation / Piccolotto, N., Bögl, M., Mühlmann, C., Nordhausen, K., Filzmoser, P., & Miksch, S. (2022, June 15). Visual Parameter Selection for Spatial Blind Source Separation [Conference Presentation]. EuroVis 2022, Rome, Italy.
- Visual Parameter Selection for Spatial Blind Source Separation / Piccolotto, N., Bögl, M., Muehlmann, C., Nordhausen, K., Filzmoser, P., & Miksch, S. (2022). Visual Parameter Selection for Spatial Blind Source Separation. Computer Graphics Forum, 41(3), 157–168. https://doi.org/10.1111/cgf.14530
2020
-
Visual analysis of periodic time series data : supporting model selection, prediction, imputation, and outlier detection using visual analytics
/
Bögl, M. (2020). Visual analysis of periodic time series data : supporting model selection, prediction, imputation, and outlier detection using visual analytics [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.86301
Download: PDF (4.52 MB)
2019
-
Quantifying Uncertainty in Multivariate Time Series Pre-Processing
/
Bors, C., Bernard, J., Bögl, M., Gschwandtner, T., Kohlhammer, J., & Miksch, S. (2019). Quantifying Uncertainty in Multivariate Time Series Pre-Processing. In T. von Landesberger & C. Turkay (Eds.), EuroVis Workshop on Visual Analytics (pp. 31–35). Proceedings of the 21st EG/VGTC Conference on Visualization (EuroVis 2019). https://doi.org/10.2312/eurova.20191121
Project: VISSECT (2016–2020)
2018
-
Combining the Automated Segmentation and Visual Analysis of Multivariate Time Series
/
Bernard, J., Bors, C., Bögl, M., Eichner, C., Gschwandtner, T., Miksch, S., Schumann, H., & Kohlhammer, J. (2018). Combining the Automated Segmentation and Visual Analysis of Multivariate Time Series. In C. Tomonski & T. von Landesberger (Eds.), EuroVis Workshop on Visual Analytics (EuroVA) 2018 (pp. 49–53). Eurographics Digital Library. https://doi.org/10.2312/eurova.20181112
Project: VISSECT (2016–2020) -
Categorizing Uncertainties in the Process of Segmenting and Labeling Time Series Data
/
Bögl, M., Bors, C., Gschwandtner, T., & Miksch, S. (2018). Categorizing Uncertainties in the Process of Segmenting and Labeling Time Series Data. In A. Puig & R. Raidou (Eds.), EuroVis 2018 - Posters (pp. 45–47). The Eurographics Association. https://doi.org/10.2312/eurp.20181126
Project: VISSECT (2016–2020) -
Uncertainty types in segmenting and labeling time series data
/
Bögl, M., Bors, C., Gschwandtner, T., & Miksch, S. (2018). Uncertainty types in segmenting and labeling time series data. Data Science, Statistics & Visualisation, Lissabon, EU. http://hdl.handle.net/20.500.12708/86861
Project: VISSECT (2016–2020) -
Quantifying Uncertainty in Time Series Data Processing
/
Bors, C., Bögl, M., Bernard, J., Gschwandtner, T., & Miksch, S. (2018). Quantifying Uncertainty in Time Series Data Processing. VisInPractice Mini-Symposium on Visualizing Uncertainty, Berlin, EU. http://hdl.handle.net/20.500.12708/86740
Project: VISSECT (2016–2020)
2017
-
Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction
/
Bögl, M., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Leite, R. A., Miksch, S., & Rind, A. (2017). Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction. Eurographics / IEEE VGTC Conference on Visualization (EuroVis 2017), Barcelona, Spain, EU. http://hdl.handle.net/20.500.12708/86509
Project: VISSECT (2016–2020) -
Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction
/
Bögl, M., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Leite, R. A., Miksch, S., & Rind, A. (2017). Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction. Computer Graphics Forum, 36(3), 227–238. http://hdl.handle.net/20.500.12708/146628
Project: VISSECT (2016–2020) -
Visual Support for Rastering of Unequally Spaced Time Series
/
Bors, C., Bögl, M., Gschwandtner, T., & Miksch, S. (2017). Visual Support for Rastering of Unequally Spaced Time Series. Data Science, Statistics & Visualisation, Lissabon, EU. http://hdl.handle.net/20.500.12708/86514
Project: VISSECT (2016–2020) -
Visual support for rastering of unequally spaced time series
/
Bors, C., Bögl, M., Gschwandtner, T., & Miksch, S. (2017). Visual support for rastering of unequally spaced time series. In R. P. Biuk-Aghai, J. Li, & S. Takahashi (Eds.), Proceedings of the 10th International Symposium on Visual Information Communication and Interaction. ACM International Conference Proceeding Series. https://doi.org/10.1145/3105971.3105984
Project: VISSECT (2016–2020)
2016
-
Visual-Interactive Segmentation of Multivariate Time Series
/
Bernard, J., Dobermann, E., Bögl, M., Röhlig, M., Vögele, A., & Kohlhammer, J. (2016). Visual-Interactive Segmentation of Multivariate Time Series. In N. Andrienko & M. Sedlmair (Eds.), EuroVA 2016 EuroVis Workshop on Visual Analytics (pp. 31–35). The Eurographics Association. https://doi.org/10.2312/eurova.20161121
Project: VISSECT (2016–2020) - Visual Encodings of Temporal Uncertainty: A Comparative User Study / Gschwandtner, T., Bögl, M., Federico, P., & Miksch, S. (2016). Visual Encodings of Temporal Uncertainty: A Comparative User Study. IEEE Transactions on Visualization and Computer Graphics, 22(1), 539–548. https://doi.org/10.1109/tvcg.2015.2467752
- Guiding the Visualization of Time-oriented Data / Ceneda, D., Aigner, W., Bögl, M., Gschwandtner, T., & Miksch, S. (2016). Guiding the Visualization of Time-oriented Data. In Proceedings of IEEE VIS. IEEE Visualization, Minneapolis, USA, Austria. http://hdl.handle.net/20.500.12708/56578
2015
- Supporting Activity Recognition by Visual Analytics / Röhlig, M., Luboschik, M., Bögl, M., Krüger, F., Alsallakh, B., Miksch, S., Kirste, T., & Schumann, H. (2015). Supporting Activity Recognition by Visual Analytics. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (p. 8). IEEE. http://hdl.handle.net/20.500.12708/56131
- Enhancing Time Series Segmentation and Labeling Through the Knowledge Generation Model / Gschwandtner, T., Schumann, H., Bernard, J., May, T., Bögl, M., Miksch, S., Kohlhammer, J., Röhlig, M., & Alsallakh, B. (2015). Enhancing Time Series Segmentation and Labeling Through the Knowledge Generation Model. In R. Maciejewski & F. Marton (Eds.), Proceedings of the Eurographics Conference on Visualization (EuroVis) - Posters 2015 (p. 3). Eurographics Association. http://hdl.handle.net/20.500.12708/56049
-
Integrating Predictions in Time Series Model Selection
/
Bögl, M., Aigner, W., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Miksch, S., & Rind, A. (2015). Integrating Predictions in Time Series Model Selection. In J. Yang, E. Bertini, N. Elmqvist, T. Dwyer, X. Yuan, & H. Carr (Eds.), EuroVA 2015 EuroVis Workshop on Visual Analytics (pp. 73–78). The Eurographics Association. https://doi.org/10.2312/eurova.20151107
Project: HypoVis (2011–2015) - Visually and Statistically Guided Imputation of Missing Values in Univariate Seasonal Time Series / Bögl, M., Aigner, W., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Miksch, S., & Rind, A. (2015). Visually and Statistically Guided Imputation of Missing Values in Univariate Seasonal Time Series. In J. Yang, E. Bertini, N. Elmqvist, T. Dwyer, X. Yuan, & H. Carr (Eds.), Poster Proceedings of the IEEE Visualization Conference 2015 (p. 2). http://hdl.handle.net/20.500.12708/56130
- Visual Exploration and Analysis of Uncertain Time-oriented Data / Bögl, M. (2015). Visual Exploration and Analysis of Uncertain Time-oriented Data. In E. Marai, C. Collins, & M. Pohl (Eds.), Proceedings of the IEEE VIS 2015 Doctoral Colloquium - closed, invitation only special session (p. 4). http://hdl.handle.net/20.500.12708/56037
2014
- Analyzing Parameter Influence on Time-Series Segmentation and Labeling / Röhlig, M., Luboschik, M., Schumann, H., Bögl, M., Alsallakh, B., & Miksch, S. (2014). Analyzing Parameter Influence on Time-Series Segmentation and Labeling. In G. Andrienko, E. Bertini, H. Carr, N. Elmqvist, B. Lee, & H. Leitte (Eds.), Poster Proceedings of the IEEE Visualization Conference 2014. http://hdl.handle.net/20.500.12708/55193
- A Visual Analytics Approach to Segmenting and Labeling Multivariate Time Series Data / Alsallakh, B., Bögl, M., Gschwandtner, T., Miksch, S., Esmael, B., Arnaout, A., Thonhauser, G., & Zöllner, P. (2014). A Visual Analytics Approach to Segmenting and Labeling Multivariate Time Series Data. In M. Pohl & J. C. Roberts (Eds.), EuroVis Workshop on Visual Analytics (EuroVA) (pp. 31–35). Eurographics. https://doi.org/10.2312/eurova.20141142
- Visual Analytics Methods to Guide Diagnostics for Time Series Model Predictions / Bögl, M., Aigner, W., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Miksch, S., & Rind, A. (2014). Visual Analytics Methods to Guide Diagnostics for Time Series Model Predictions. In Proceedings of the 2014 IEEE VIS Workshop on Visualization for Predictive Analytics (p. 4). http://hdl.handle.net/20.500.12708/55730
2013
-
Visual Analytics for Model Selection in Time Series Analysis
/
Bögl, M., Aigner, W., Filzmoser, P., Lammarsch, T., Miksch, S., & Rind, A. (2013). Visual Analytics for Model Selection in Time Series Analysis. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2237–2246. https://doi.org/10.1109/tvcg.2013.222
Project: HypoVis (2011–2015) -
Visual Analytics for Model Selection in Time Series Analysis
/
Bögl, M., Aigner, W., Filzmoser, P., Lammarsch, T., Miksch, S., & Rind, A. (2013). Visual Analytics for Model Selection in Time Series Analysis. IEEE Conference on Visual Analytics Science and Technology (IEEE VAST), Atlanta, GA, USA, Non-EU. http://hdl.handle.net/20.500.12708/85611
Project: HypoVis (2011–2015) - Interactive Visual Transformation for Symbolic Representation of Time-Oriented Data / Lammarsch, T., Aigner, W., Bertone, A., Bögl, M., Gschwandtner, T., Miksch, S., & Rind, A. (2013). Interactive Visual Transformation for Symbolic Representation of Time-Oriented Data. In A. Holzinger, M. Ziefle, & V. Glavinić (Eds.), Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data (pp. 400–419). Springer. https://doi.org/10.1007/978-3-642-39146-0_37
Supervisions
- Predictive visual analytics for automotive assembly quality / Tasdemir, U. (2024). Predictive visual analytics for automotive assembly quality [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.117525
-
Ein visueller Ansatz zur Exploration von Datenqualitätsproblemen in multivariaten und zeitorientierten Daten
/
Ziegelbecker, T. (2016). Ein visueller Ansatz zur Exploration von Datenqualitätsproblemen in multivariaten und zeitorientierten Daten [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2016.25484
Download: PDF (5 MB)