TU Wien Informatics

Role

  • ncclsee: A Lightweight Profiling Tool for NCCL / Vardas, I., Laso Rodriguez, R., & Salimi Beni, M. (2025). ncclsee: A Lightweight Profiling Tool for NCCL. In ASHPC25 : Austrian-Slovenian HPC Meeting 2025 : Rimske Terme, Slovenia : 19-22 May 2025 (pp. 39–39). https://doi.org/10.34726/10426
    Download: PDF (164 KB)
  • Optimizing Distributed Deep Learning Training by Tuning NCCL / Salimi Beni, M., Laso, R., Cosenza, B., Benkner, S., & Hunold, S. (2025). Optimizing Distributed Deep Learning Training by Tuning NCCL. In ASHPC25 : Austrian-Slovenian HPC Meeting 2025 : Rimske Terme, Slovenia : 19-22 May 2025 (pp. 38–38). https://doi.org/10.34726/10424
    Download: PDF (209 KB)
  • Phase-Based Frequency Scaling for Energy-Efficient Heterogeneous Computing / Carpentieri, L., De Caro, A., Salimibeni, M., Fan, K., & Cosenza, B. (2025). Phase-Based Frequency Scaling for Energy-Efficient Heterogeneous Computing. In 2025 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (pp. 824–836). IEEE. https://doi.org/10.1109/IPDPS64566.2025.00078
  • MPI Collective Algorithm Selection in the Presence of Process Arrival Patterns / Salimibeni, M., Cosenza, B., & Hunold, S. (2024). MPI Collective Algorithm Selection in the Presence of Process Arrival Patterns. In Proceedings : 2024 IEEE International Conference  on Cluster Computing : 24 – 27 September 2024  Kobe, Japan (pp. 108–119). https://doi.org/10.1109/CLUSTER59578.2024.00017
    Project: Autotune (2021–2025)