Liana Khazaliya
Univ.Ass.in
Role
-
PreDoc Researcher
Algorithms and Complexity, E192-01
Courses
Publications
-
Metric Dimension and Geodetic Set Parameterized by Vertex Cover
/
Foucaud, F., Galby, E., Khazaliya, L., Li, S., Mc Inerney, F., Sharma, R., & Tale, P. (2025). Metric Dimension and Geodetic Set Parameterized by Vertex Cover. In O. Beyersdorff, M. Pilipczuk, E. Pimentel, & N. Kim Thắng (Eds.), 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Schloss Dagstuhl. https://doi.org/10.4230/LIPIcs.STACS.2025.33
Download: PDF (1.07 MB)
Project: Parameterisierte Analyse in der Künstlichen Intelligenz (2021–2026) - The Computational Complexity of Positive Non-Clashing Teaching in Graphs / Ganian, R., Khazaliya, L., Rocton, M., & Mc Inerney, F. (2025). The Computational Complexity of Positive Non-Clashing Teaching in Graphs. In The Thirteenth International Conference on Learning Representations : ICLR 2025. Thirteenth International Conference on Learning Representations (ICLR 2025), Singapore. International Conference on Learning Representations (ICLR).
- Crossing Number is NP-hard for Constant Path-width (and Tree-width) / Hliněný, P., & Khazaliya, L. (2024). Crossing Number is NP-hard for Constant Path-width (and Tree-width). arXiv. https://doi.org/10.48550/arXiv.2406.18933
- Problems in NP Can Admit Double-Exponential Lower Bounds When Parameterized by Treewidth or Vertex Cover / Foucaud, F., Galby, E., Khazaliya, L., Li, S., Mc Inerney, F. A., Sharma, R., & Tale, P. (2024). Problems in NP Can Admit Double-Exponential Lower Bounds When Parameterized by Treewidth or Vertex Cover. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024) (pp. 66:1-66:19). https://doi.org/10.4230/LIPICS.ICALP.2024.66
- The st-Planar Edge Completion Problem Is Fixed-Parameter Tractable / Khazaliya, L., Kindermann, P., Liotta, G., Montecchiani, F., & Simonov, K. (2023). The st-Planar Edge Completion Problem Is Fixed-Parameter Tractable. In S. Iwata & N. Kakimura (Eds.), 34th International Symposium on Algorithms and Computation (ISAAC 2023) (pp. 1–13). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.ISAAC.2023.46
- Upward and Orthogonal Planarity are W[1]-Hard Parameterized by Treewidth / Jansen, B. M. P., Khazaliya, L., Kindermann, P., Liotta, G., Montecchiani, F., & Simonov, K. (2023). Upward and Orthogonal Planarity are W[1]-Hard Parameterized by Treewidth. In Graph Drawing and Network Visualization : 31st International Symposium, GD 2023, Isola delle Femmine, Palermo, Italy, September 20–22, 2023, Revised Selected Papers, Part II (pp. 203–217). Springer. http://hdl.handle.net/20.500.12708/201368
- Extending Orthogonal Planar Graph Drawings Is Fixed-Parameter Tractable / Bhore, S., Ganian, R., Khazaliya, L., Montecchiani, F., & Nöllenburg, M. (2023). Extending Orthogonal Planar Graph Drawings Is Fixed-Parameter Tractable. In E. Chambers & J. Gudmundsson (Eds.), 39th International Symposium on Computational Geometry (pp. 1–16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2023.18
- Consistency Checking Problems: A Gateway to Parameterized Sample Complexity / Ganian, R., Khazaliya, L., & Simonov, K. (2023). Consistency Checking Problems: A Gateway to Parameterized Sample Complexity. In N. Misra & M. Wahlström (Eds.), 18th International Symposium on Parameterized and Exact Computation (IPEC 2023) (pp. 1–17). Schloss-Dagstuhl - Leibniz Zentrum für Informatik. http://hdl.handle.net/20.500.12708/191150
- Metric Dimension Parameterized by Feedback Vertex Set and Other Structural Parameters / Galby, E., Khazaliya, L., Mc Inerney, F., Sharma, R., & Tale, P. (2023). Metric Dimension Parameterized by Feedback Vertex Set and Other Structural Parameters. SIAM Journal on Discrete Mathematics, 37(4), 2241–2264. https://doi.org/10.1137/22M1510911