Johannes Eschner
Univ.Ass. Dipl.-Ing. / BSc
Role
-
PreDoc Researcher
Computer Graphics, E193-02
Courses
Projects
Publications
-
Enhancing Environmental Data Communication Through VR
/
Huber, M., Eschner, J., Krösl, K., & Vuckovic, M. (2025). Enhancing Environmental Data Communication Through VR. In Computer Graphics & Visual Computing (CGVC) 2025 : Eurographics UK Chapter Proceedings : Liverpool John Moores University, UK : 11 - 12 September 2025. Computer Graphics & Visual Computing 2025 (CGVC 2025), Liverpool John Moores University, United Kingdom of Great Britain and Northern Ireland (the). The Eurographics Association. https://doi.org/10.2312/cgvc.20251220
Download: PDF (4.37 MB)
Project: ClimaSens (2024–2027) -
Interactive discovery and exploration of visual bias in generative text‐to‐image models
/
Eschner, J., Labadie‐Tamayo, R., Zeppelzauer, M., & Waldner, M. (2025). Interactive discovery and exploration of visual bias in generative text‐to‐image models. Computer Graphics Forum, Article e70135. https://doi.org/10.1111/cgf.70135
Download: PDF (44.1 MB)
Projects: FAIR-AI (2024–2026) / JDE (2023–2026) - How to represent landmark trees in digital 3D maps? An automated workflow and user study / Grammatikaki, A., Eschner, J., Ledermann, F., Argudo, O., & Waldner, M. (2025). How to represent landmark trees in digital 3D maps? An automated workflow and user study. Cartography and Geographic Information Science. https://doi.org/10.1080/15230406.2025.2489543
-
Illustrative Motion Smoothing for Attention Guidance in Dynamic Visualizations
/
Eschner, J., Mindek, P., & Waldner, M. (2023). Illustrative Motion Smoothing for Attention Guidance in Dynamic Visualizations. Computer Graphics Forum, 42(3), 361–372. https://doi.org/10.1111/cgf.14836
Download: PDF (8.67 MB) -
Real-time avalanche risk visualization on a large-scale geospatial dataset
/
Eschner, J. (2023). Real-time avalanche risk visualization on a large-scale geospatial dataset [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.102961
Download: PDF (4.53 MB)