Jakob Bleier
BSc BSc MSc
About
Hi there, I'm Jakob! I'm working on Android app analysis with a focus on the Android Runtime and how it can be used for holistic approaches combining Dalvik and native code, as well as code similarity for applications such as library detection.
Role
-
PreDoc Researcher
Security and Privacy, E192-06
Courses
Publications
-
Comparing Apples to Androids: Discovery, Retrieval, and Matching of iOS and Android Apps for Cross-Platform Analyses
/
Steinböck, M., Bleier, J., Rainer, M., Urban, T., Utz, C., & Lindorfer, M. (2024). Comparing Apples to Androids: Discovery, Retrieval, and Matching of iOS and Android Apps for Cross-Platform Analyses. In MSR ’24: Proceedings of the 21st International Conference on Mining Software Repositories (pp. 348–360). https://doi.org/10.1145/3643991.3644896
Download: PDF (780 KB)
Projects: IoTIO (2020–2025) / W4MP (2023–2027) -
Of Ahead Time: Evaluating Disassembly of Android Apps Compiled to Binary OATs Through the ART
/
Bleier, J., & Lindorfer, M. (2023). Of Ahead Time: Evaluating Disassembly of Android Apps Compiled to Binary OATs Through the ART. In J. Polakis & E. van der Kouwe (Eds.), EUROSEC ’23: Proceedings of the 16th European Workshop on System Security (pp. 21–29). https://doi.org/10.1145/3578357.3591219
Download: PDF (2.39 MB)
Projects: IoTIO (2020–2025) / SPFBT (2020–2026) -
Mixed Signals: Analyzing Software Attribution Challenges in the Android Ecosystem
/
Hageman, K., Feal, A., Gamba, J., Girish, A., Bleier, J., Lindorfer, M., Tapiador, J., & Vallina-Rodriguez, N. (2023). Mixed Signals: Analyzing Software Attribution Challenges in the Android Ecosystem. IEEE Transactions on Software Engineering, 49(4), 2964–2979. https://doi.org/10.34726/5296
Download: PDF (3.29 MB)
Projects: IoTIO (2020–2025) / SPFBT (2020–2026) -
No Spring Chicken: Quantifying the Lifespan of Exploits in IoT Malware Using Static and Dynamic Analysis
/
Al Alsadi, A. A., Sameshima, K., Bleier, J., Yoshioka, K., Lindorfer, M., van Eeten, M., & Hernández Gañán, C. (2022). No Spring Chicken: Quantifying the Lifespan of Exploits in IoT Malware Using Static and Dynamic Analysis. In Yuji Suga, Kouichi Sakurai, Xuhua Ding, & Kazue Sako (Eds.), ASIA CCS ’22: Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security (pp. 309–321). Association for Computing Machinery. https://doi.org/10.1145/3488932.3517408
Project: IoTIO (2020–2025) -
ART-assisted App Diffing: Defeating Dalvik Bytecode Shrinking, Obfuscation, and Optimization with Android's OAT Compiler
/
Bleier, J., & Lindorfer, M. (2022, May 23). ART-assisted App Diffing: Defeating Dalvik Bytecode Shrinking, Obfuscation, and Optimization with Android’s OAT Compiler [Poster Presentation]. 43rd IEEE Symposium on Security and Privacy, San Francisco, United States of America (the).
Project: IoTIO (2020–2025)
Supervisions
-
Binary matching of android and iOS apps
/
Keusch, A. (2025). Binary matching of android and iOS apps [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.128603
Download: PDF (2.56 MB) -
Identifying frameworks in android applications using binary code function similarity
/
Zeier, Y. (2024). Identifying frameworks in android applications using binary code function similarity [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.117246
Download: PDF (1.07 MB) -
Tracing android apps based on ART ahead-of-time compilation profiles from Google Play
/
Burtscher, L. (2022). Tracing android apps based on ART ahead-of-time compilation profiles from Google Play [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2022.90745
Download: PDF (1.22 MB) -
Large-scale Static Analysis of PII Leakage in IoT Companion Apps
/
Schmidt, D. (2021). Large-scale Static Analysis of PII Leakage in IoT Companion Apps [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.86548
Download: PDF (2.16 MB) -
Detecting neural network functions in binaries based on syntactic features
/
Aschl, G. (2020). Detecting neural network functions in binaries based on syntactic features [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.66352
Download: PDF (2.41 MB)