TU Wien Informatics

About

Gábor Recski (he/him) is a computational linguist working in the field of natural language processing (NLP). Formerly an assistant professor at the Budapest University of Technology, he is currently a postdoctoral researcher in the Data Science Research Unit at the TU Wien Faculty of Informatics. His research interests include the computational modeling of natural language semantics and the use of such models for transparent information extraction. In addition to his research Gábor also teaches two courses on NLP at the Faculty and supervises several students at the BSc, MSc, and PhD levels. He is the co-author of over 50 peer-reviewed publications and a program committee member of ACL, EMNLP, LREC, as well as ACM CIKM and SIGIR.

Roles

  • PostDoc Researcher
    Data Science, E194-04
  • Faculty Council
    Substitute Member
  • Curriculum Commission for Business Informatics
    Substitute Member

2025

  • Transparent and trustworthy AI for legal document generation / Recski, G. (2025, June 16). Transparent and trustworthy AI for legal document generation [Keynote Presentation]. 7th Workshop on Automated Semantic Analysis of Information in Legal Text (ASAIL 2025), United States of America (the).
  • How can we trust LLMs? / Recski, G. (2025, May 20). How can we trust LLMs? [Conference Presentation]. dataSTREAM 2025, Hungary.
  • KR Labs at ArchEHR-QA 2025: A Verbatim Approach for Evidence-Based Question Answering / Kovacs, A., Schmitt, P., & Recski, G. (2025). KR Labs at ArchEHR-QA 2025: A Verbatim Approach for Evidence-Based Question Answering. In Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks) (pp. 69–74). Association for Computational Linguistics. https://doi.org/10.18653/v1/2025.bionlp-share.8

2024

  • Fact-checking LLMs with explainable information extraction / Recski, G. (2024, November 19). Fact-checking LLMs with explainable information extraction [Conference Presentation]. Language Intelligence 2024, Austria. https://doi.org/10.34726/8540
    Download: Slides (1.74 MB)
  • BRISE-plandok: a German legal corpus of building regulations / Recski, G., Iklodi, E., Lellmann, B., Kovács, Á., & Hanbury, A. (2024). BRISE-plandok: a German legal corpus of building regulations. Language Resources and Evaluation. https://doi.org/10.1007/s10579-024-09747-7
    Project: BRISE-Vienna (2019–2025)
  • TU Wien at SemEval-2024 Task 6: Unifying Model-Agnostic and Model-Aware Techniques for Hallucination Detection / Arzt, V., Azarbeik, M. M., Lasy, I., Kerl, T., & Recski, G. (2024). TU Wien at SemEval-2024 Task 6: Unifying Model-Agnostic and Model-Aware Techniques for Hallucination Detection. In A. K. Ojha, A. S. Dogruöz, H. Tayyar Madabushi, G. Da San Martino, S. Rosenthal, & A. Rosá (Eds.), Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024) (pp. 1183–1196). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.semeval-1.173
  • Nyelvi sokszínűség az emberi és gépi fordításban / Recski, G. (2024, May 15). Nyelvi sokszínűség az emberi és gépi fordításban [Keynote Presentation]. Elektrubadúr plusz: Mesterséges intelligencia és műfordítás, Budapest, Hungary. http://hdl.handle.net/20.500.12708/199011
    Download: Slides (516 KB)
  • What can AI do for Advanced Legal Research? / Recski, G. (2024, February 16). What can AI do for Advanced Legal Research? [Conference Presentation]. IRIS24: Internationales Rechtsinformatik Symposion 2024, Salzburg, Austria. https://doi.org/10.34726/6140
    Download: Slides (1.31 MB)
  • TPPMI - a Temporal Positive Pointwise Mutual Information Embedding of Words / Schmitt, P., Rakovics, Z., Rakovics, M., & Recski, G. (2024). TPPMI - a Temporal Positive Pointwise Mutual Information Embedding of Words. In Proceedings of the 4th Workshop on Computational Linguistics for the Political and Social Sciences: Long and short papers (pp. 119–125). http://hdl.handle.net/20.500.12708/201681
  • Word alignment in Discourse Representation Structure parsing / Obereder, C., & Recski, G. (2024). Word alignment in Discourse Representation Structure parsing. In Proceedings of the 20th Conference on Natural Language Processing (KONVENS 2024) (pp. 50–56). http://hdl.handle.net/20.500.12708/201684

2023

2022

2021

  • Offensive text detection on English Twitter with deep learning models and rule-based systems / Gemes, K. A., Kovacs, A., Reichel, M., & Recski, G. (2021). Offensive text detection on English Twitter with deep learning models and rule-based systems. In P. Mehta, T. Mandl, P. Majumder, & M. Mitra (Eds.), FIRE-WN 2021 [FIRE 2021 Working Notes] (pp. 283–296). CEUR-WS.org. https://doi.org/10.34726/4342
    Download: PDF (256 KB)
  • Explainable Rule Extraction via Semantic Graphs / Recski, G., Lellmann, B., Kovacs, A., & Hanbury, A. (2021). Explainable Rule Extraction via Semantic Graphs. In Proceedings of the Fifth Workshop on Automated Semantic Analysis of Information in Legal Text (ASAIL 2021) (pp. 24–35). CEUR-WS.org. http://hdl.handle.net/20.500.12708/58465
  • The Gutenberg Dialogue Dataset / Csaky, R., & Recski, G. (2021). The Gutenberg Dialogue Dataset. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 16th Conference of the European Chapter of the Association for Computational Linguistics, Unknown. The Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.eacl-main.11
  • DreamDrug - A crowdsourced NER dataset for detecting drugs in darknet markets / Bogensperger, J., Schlarb, S., Hanbury, A., & Recski, G. (2021). DreamDrug - A crowdsourced NER dataset for detecting drugs in darknet markets. In Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.wnut-1.17
  • Explainable emotion detection with syntactic and semantic graphs / Recski, G. (2021). Explainable emotion detection with syntactic and semantic graphs. Österreichisches Treffen zu Sentimentinferenz (ÖTSI), Wien, Austria. http://hdl.handle.net/20.500.12708/87245
  • TUW-Inf at GermEval2021: Rule-based and Hybrid Methods for Detecting Toxic, Engaging, and Fact-Claiming Comments / Gemes, K. A., & Recski, G. (2021). TUW-Inf at GermEval2021: Rule-based and Hybrid Methods for Detecting Toxic, Engaging, and Fact-Claiming Comments. In Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021 (pp. 69–75). netlibrary. https://doi.org/10.48415/2021/fhw5-x128

2020

  • BME-TUW at SR'20: Lexical grammar induction for surface realization / Recski, G., Kovacs, A., Gemes, K. A., Ács, J., & Kornai, A. (2020). BME-TUW at SR’20: Lexical grammar induction for surface realization. In Proceedings of the Third Workshop on Multilingual Surface Realisation (MSR´20) (pp. 21–29). http://hdl.handle.net/20.500.12708/55594
  • Explainable lexical entailment with semantic graphs / Kovacs, A., Gemes, K., Kornai, A., & Recski, G. (2020). Explainable lexical entailment with semantic graphs. In Proceedings of the 14th International Workshop on Semantic Evaluation (pp. 135–141). ACL Anthology. http://hdl.handle.net/20.500.12708/58391

2019

  • Machine comprehension using semantic graphs / Gemes, K. A., Kovacs, A., & Recski, G. (2019). Machine comprehension using semantic graphs. In Proceedings of the Automation and Applied Computer Science Workshop 2019. AACS. http://hdl.handle.net/20.500.12708/58793