TU Wien Informatics

Role

  • CCN⁺: A Neuro-symbolic Framework for Deep Learning with Requirements   / Giunchiglia, E., Tatomir, A., Stoian, M. C., & Lukasiewicz, T. (2024). CCN+: A Neuro-symbolic Framework for Deep Learning with Requirements  . International Journal of Approximate Reasoning, 171, Article 109124. https://doi.org/10.1016/j.ijar.2024.109124
  • How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for Tabular Data / Stoian, M. C., Dyrmishi, S., Cordy, M., Lukasiewicz, T., & Giunchiglia, E. (2024). How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for Tabular Data. In The Twelfth International Conference on Learning Representations. 12th International Conference on Learning Representations (ICLR 2024), Wien, Austria. http://hdl.handle.net/20.500.12708/210296
  • PiShield: A NeSy Framework for Learning with Requirements / Stoian, M. C., Tatomir, A., Lukasiewicz, T., & Giunchiglia, E. (2024). PiShield: A NeSy Framework for Learning with Requirements. In K. Larson (Ed.), IJCAI ’24: Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (pp. 8805–8809). Association for Computing Machinery. https://doi.org/10.24963/ijcai.2024/1037
  • To TTP or not to TTP?: Exploiting TTPs to Improve ML-based Malware Detection / Sharma, Y., Giunchiglia, E., Birnbach, S., & Martinovic, I. (2023). To TTP or not to TTP?: Exploiting TTPs to Improve ML-based Malware Detection. In Proceedings of the 2023 IEEE International Conference on Cyber Security and Resilience (CSR) (pp. 8–15). https://doi.org/10.1109/CSR57506.2023.10225000
  • ROAD-R: the autonomous driving dataset with logical requirements / Giunchiglia, E., Stoian, M. C., Khan, S., Cuzzolin, F., & Lukasiewicz, T. (2023). ROAD-R: the autonomous driving dataset with logical requirements. Machine Learning, 112, 3261–3291. https://doi.org/10.1007/s10994-023-06322-z
  • Exploiting T-norms for Deep Learning in Autonomous Driving / Stoian, M. C., Giunchiglia, E., & Lukasiewicz, T. (2023). Exploiting T-norms for Deep Learning in Autonomous Driving. In A. S. d’Avila Garcez, T. R. Besold, M. Gori, & E. Jimenez-Ruiz (Eds.), Proceedings of the 17th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2023) (pp. 369–380). http://hdl.handle.net/20.500.12708/193631
  • Deep Learning with Logical Constraints / Giunchiglia, E., Stoian, M. C., & Lukasiewicz, T. (2022). Deep Learning with Logical Constraints. In L. De Raedt (Ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (pp. 5478–5485). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2022/767