David Penz
Univ.Ass. Dipl.-Ing. / B.A.
Role
-
PreDoc Researcher
Machine Learning, E194-06
Contact
- david.penz@tuwien.ac.at
- +43-1-58801-194604
- Erzherzog-Johann-Platz 1, Room FB0213
- vCard from TISS
Courses
2022W
- Bachelor Thesis in Computer Science / 194.112 / PR
- Machine Learning Algorithms and Applications / 194.101 / PR
- Project in Computer Science 1 - Machine Learning Algorithms and Applications / 194.119 / PR
- Seminar in Artificial Intelligence - Theoretical Aspects of Machine Learning / 194.118 / SE
- Theoretical Foundations and Research Topics in Machine Learning / 194.100 / VU
2023S
- Bachelor Thesis in Computer Science / 194.112 / PR
- Interdisciplinary Project in Data Science / 194.060 / PR
- Machine Learning Algorithms and Applications / 194.101 / PR
- Project in Computer Science 1 - Machine Learning Algorithms and Applications / 194.119 / PR
- Seminar in Artificial Intelligence - Theoretical Aspects of Machine Learning / 194.118 / SE
- Theoretical Foundations and Research Topics in Machine Learning / 194.100 / VU
Publications
Note: Due to the rollout of TU Wien’s new publication database, the list below may be slightly outdated. Once the migration is complete, everything will be up to date again.
- Unlearning Protected User Attributes in Recommendations with Adversarial Training / Ganhör, C., Penz, D., Rekabsaz, N., Lesota, O., & Schedl, M. (2022). Unlearning Protected User Attributes in Recommendations with Adversarial Training. In SIGIR ’22: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 2142–2147). https://doi.org/10.1145/3477495.3531820
- EmoMTB: Emotion-aware Music Tower Blocks / Melchiorre, A. B., Penz, D., Ganhör, C., Lesota, O., Fragoso, V., Friztl, F., Parada-Cabaleiro, E., Schubert, F., & Schedl, M. (2022). EmoMTB: Emotion-aware Music Tower Blocks. In ICMR ’22: Proceedings of the 2022 International Conference on Multimedia Retrieval (pp. 206–210). https://doi.org/10.1145/3512527.3531351
- LFM-2b: A Dataset of Enriched Music Listening Events for Recommender Systems Research and Fairness Analysis / Schedl, M., Brandl, S., Lesota, O., Parada-Cabaleiro, E., Penz, D., & Rekabsaz, N. (2022). LFM-2b: A Dataset of Enriched Music Listening Events for Recommender Systems Research and Fairness Analysis. In ACM SIGIR Conference on Human Information Interaction and Retrieval. ACM. https://doi.org/10.1145/3498366.3505791
- Recommending reviewers for theses using artificial intelligence / Penz, D. (2021). Recommending reviewers for theses using artificial intelligence [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.76463
- Team JKU-AIWarriors in the ACM Recommender Systems Challenge 2021: Lightweight XGBoost Recommendation Approach Leveraging User Features / Krauck, A., Penz, D., & Schedl, M. (2021). Team JKU-AIWarriors in the ACM Recommender Systems Challenge 2021: Lightweight XGBoost Recommendation Approach Leveraging User Features. In RecSysChallenge ’21: Proceedings of the Recommender Systems Challenge 2021. ACM. https://doi.org/10.1145/3487572.3487874