TU Wien Informatics

Role

  • Epsilon Calculus and LK / Lolic, A. (2024, August 23). Epsilon Calculus and LK [Conference Presentation]. Dagstuhl-Seminar:  Proof Representations: From Theory to Applications 2024, Dagstuhl, Germany. http://hdl.handle.net/20.500.12708/206166
    Project: Pandaforest (2022–2025)
  • On Proof Schemata and Primitive Recursive Arithmetic / Leitsch, A., Lolic, A., & Mahler, S. L. (2024). On Proof Schemata and Primitive Recursive Arithmetic. In N. Bjorner, M. Heule, & A. Voronkov (Eds.), LPAR 2024 Complementary Volume (pp. 117–130). https://doi.org/10.29007/4g2q
    Project: Pandaforest (2022–2025)
  • Interpolation Properties of Proofs with Cuts / Lolić, A. (2024). Interpolation Properties of Proofs with Cuts. In 13th International Conference Logic and Applications LAP 2024 : Book of Abstracts (pp. 31–33).
    Project: Pandaforest (2022–2025)
  • Towards an Analysis of Proofs in Arithmetic / Leitsch, A., Lolić, A., & Mahler, S. (2024). Towards an Analysis of Proofs in Arithmetic. In C. Kop (Ed.), 19th International Workshop on Logical and Semantic Frameworks, with Applications. LSFA 2024 Proceedings (pp. 122–135).
    Project: Pandaforest (2022–2025)
  • Sequent Calculi for Choice Logics / Bernreiter, M., Lolic, A., Maly, J., & Woltran, S. (2024). Sequent Calculi for Choice Logics. Journal of Automated Reasoning, 68(2), Article 8. https://doi.org/10.1007/s10817-024-09695-5
    Project: Pandaforest (2022–2025)
  • On Translations of Epsilon Proofs to LK / Baaz, M., & Lolic, A. (2024). On Translations of Epsilon Proofs to LK. In Proceedings of 25th Conference on Logic for Programming, Artificial Intelligence and Reasoning (pp. 232–245). https://doi.org/10.29007/9pts
    Project: Pandaforest (2022–2025)
  • Herbrand's Theorem in Inductive Proofs / Leitsch, A., & Lolic, A. (2024). Herbrand’s Theorem in Inductive Proofs. In Proceedings of 25th Conference on Logic for Programming, Artificial Intelligence and Reasoning (pp. 295–310). EasyChair. https://doi.org/10.29007/dwdf
    Project: Pandaforest (2022–2025)
  • Sequent Calculi for Choice Logics / Bernreiter, M., Lolic, A., Maly, J., & Woltran, S. (2022). Sequent Calculi for Choice Logics. In Automated Reasoning (pp. 331–349). Springer International Publishing. https://doi.org/10.1007/978-3-031-10769-6_20
    Download: PDF (375 KB)
    Project: HYPAR (2019–2024)
  • Schematic Refutations of Formula Schemata / Cerna, D. M., Leitsch, A., & Lolić, A. (2021). Schematic Refutations of Formula Schemata. Journal of Automated Reasoning, 65(5), 599–645. https://doi.org/10.1007/s10817-020-09583-8
    Download: PDF (683 KB)
  • Towards a proof theory for Henkin quantifiers / Baaz, M., & Lolic, A. (2021). Towards a proof theory for Henkin quantifiers. Journal of Logic and Computation, 31(1), 40–66. https://doi.org/10.1093/logcom/exaa071
  • An abstract form of the first epsilon theorem / Baaz, M., Leitsch, A., & Lolic, A. (2021). An abstract form of the first epsilon theorem. Journal of Logic and Computation, 30(8), 1447–1468. https://doi.org/10.1093/logcom/exaa044
  • Automated proof analysis by CERES / Lolić, A. (2020). Automated proof analysis by CERES [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.47184
    Download: PDF (1.59 MB)
  • Schematic Refutations of Formula Schemata / Cerna, D., Leitsch, A., & Lolic, A. (2019). Schematic Refutations of Formula Schemata. arXiv. https://doi.org/10.48550/arXiv.1902.08055
  • Extraction of Expansion Trees / Leitsch, A., & Lolic, A. (2019). Extraction of Expansion Trees. Journal of Automated Reasoning, 62(3), 393–430. https://doi.org/10.1007/s10817-018-9453-9
  • A Sequent-Calculus Based Formulation of the Extended First Epsilon Theorem / Leitsch, A., Baaz, M., & Lolic, A. (2018). A Sequent-Calculus Based Formulation of the Extended First Epsilon Theorem. In Logical Foundations of Computer Science (pp. 55–71). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-72056-2_4
  • Expansion Trees from Non-Normalized Proofs with CERES / Lolic, A., & Leitsch, A. (2017). Expansion Trees from Non-Normalized Proofs with CERES. Collegium Logicum Proof Theory: Herbrand’s Theorem Revisited, Wien, Austria. http://hdl.handle.net/20.500.12708/122275
  • Herbrand Sequente und die skolemisierungs-freie CERES Methode / Lolić, A. (2015). Herbrand Sequente und die skolemisierungs-freie CERES Methode [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2015.28745
    Download: PDF (480 KB)