Anela Lolic
Dipl.-Ing.in Projektass.(FWF) Dr.in techn. / BSc
Role
-
PostDoc Researcher
Theory and Logic, E192-05
Projects
-
Skolemisierung und Gleichheit
2025 – 2029 / Austrian Science Fund (FWF)
Publications
-
Epsilon Calculus and LK
/
Lolic, A. (2024, August 23). Epsilon Calculus and LK [Conference Presentation]. Dagstuhl-Seminar: Proof Representations: From Theory to Applications 2024, Dagstuhl, Germany. http://hdl.handle.net/20.500.12708/206166
Project: Pandaforest (2022–2025) -
On Proof Schemata and Primitive Recursive Arithmetic
/
Leitsch, A., Lolic, A., & Mahler, S. L. (2024). On Proof Schemata and Primitive Recursive Arithmetic. In N. Bjorner, M. Heule, & A. Voronkov (Eds.), LPAR 2024 Complementary Volume (pp. 117–130). https://doi.org/10.29007/4g2q
Project: Pandaforest (2022–2025) -
Interpolation Properties of Proofs with Cuts
/
Lolić, A. (2024). Interpolation Properties of Proofs with Cuts. In 13th International Conference Logic and Applications LAP 2024 : Book of Abstracts (pp. 31–33).
Project: Pandaforest (2022–2025) -
Towards an Analysis of Proofs in Arithmetic
/
Leitsch, A., Lolić, A., & Mahler, S. (2024). Towards an Analysis of Proofs in Arithmetic. In C. Kop (Ed.), 19th International Workshop on Logical and Semantic Frameworks, with Applications. LSFA 2024 Proceedings (pp. 122–135).
Project: Pandaforest (2022–2025) -
Sequent Calculi for Choice Logics
/
Bernreiter, M., Lolic, A., Maly, J., & Woltran, S. (2024). Sequent Calculi for Choice Logics. Journal of Automated Reasoning, 68(2), Article 8. https://doi.org/10.1007/s10817-024-09695-5
Project: Pandaforest (2022–2025) -
On Translations of Epsilon Proofs to LK
/
Baaz, M., & Lolic, A. (2024). On Translations of Epsilon Proofs to LK. In Proceedings of 25th Conference on Logic for Programming, Artificial Intelligence and Reasoning (pp. 232–245). https://doi.org/10.29007/9pts
Project: Pandaforest (2022–2025) -
Herbrand's Theorem in Inductive Proofs
/
Leitsch, A., & Lolic, A. (2024). Herbrand’s Theorem in Inductive Proofs. In Proceedings of 25th Conference on Logic for Programming, Artificial Intelligence and Reasoning (pp. 295–310). EasyChair. https://doi.org/10.29007/dwdf
Project: Pandaforest (2022–2025) -
Sequent Calculi for Choice Logics
/
Bernreiter, M., Lolic, A., Maly, J., & Woltran, S. (2022). Sequent Calculi for Choice Logics. In Automated Reasoning (pp. 331–349). Springer International Publishing. https://doi.org/10.1007/978-3-031-10769-6_20
Download: PDF (375 KB)
Project: HYPAR (2019–2024) -
Schematic Refutations of Formula Schemata
/
Cerna, D. M., Leitsch, A., & Lolić, A. (2021). Schematic Refutations of Formula Schemata. Journal of Automated Reasoning, 65(5), 599–645. https://doi.org/10.1007/s10817-020-09583-8
Download: PDF (683 KB) - Towards a proof theory for Henkin quantifiers / Baaz, M., & Lolic, A. (2021). Towards a proof theory for Henkin quantifiers. Journal of Logic and Computation, 31(1), 40–66. https://doi.org/10.1093/logcom/exaa071
- An abstract form of the first epsilon theorem / Baaz, M., Leitsch, A., & Lolic, A. (2021). An abstract form of the first epsilon theorem. Journal of Logic and Computation, 30(8), 1447–1468. https://doi.org/10.1093/logcom/exaa044
-
Automated proof analysis by CERES
/
Lolić, A. (2020). Automated proof analysis by CERES [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.47184
Download: PDF (1.59 MB) - Schematic Refutations of Formula Schemata / Cerna, D., Leitsch, A., & Lolic, A. (2019). Schematic Refutations of Formula Schemata. arXiv. https://doi.org/10.48550/arXiv.1902.08055
- Extraction of Expansion Trees / Leitsch, A., & Lolic, A. (2019). Extraction of Expansion Trees. Journal of Automated Reasoning, 62(3), 393–430. https://doi.org/10.1007/s10817-018-9453-9
- A Sequent-Calculus Based Formulation of the Extended First Epsilon Theorem / Leitsch, A., Baaz, M., & Lolic, A. (2018). A Sequent-Calculus Based Formulation of the Extended First Epsilon Theorem. In Logical Foundations of Computer Science (pp. 55–71). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-72056-2_4
- Expansion Trees from Non-Normalized Proofs with CERES / Lolic, A., & Leitsch, A. (2017). Expansion Trees from Non-Normalized Proofs with CERES. Collegium Logicum Proof Theory: Herbrand’s Theorem Revisited, Wien, Austria. http://hdl.handle.net/20.500.12708/122275
-
Herbrand Sequente und die skolemisierungs-freie CERES Methode
/
Lolić, A. (2015). Herbrand Sequente und die skolemisierungs-freie CERES Methode [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2015.28745
Download: PDF (480 KB)