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Why combine?
Currently, symbolic reasoning is great in narrow AI

• The user specifies the problem

• Very clever users apply KRR so that 

• a computer solves it. 
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Why combine?
Currently, symbolic reasoning is great in narrow AI

• The user specifies the problem

• Very clever users apply KRR so that 

• a computer solves it. 

Towards broad AI

• The user specifies the problem

• Very clever users apply KRR so that 

• a computer solves it. 

No miracles, but general problem solving should surpass humans.

At most 10% of practical problems
@ company in automation and 

digitalization in industry 
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What buys symbols and symbolic AI?

• Correctness

• “Completeness”, difficult to achieve for practical problems

• Reasoning from first principles

• Solving new problems

• Explainability
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What buys symbols and symbolic AI?

• Correctness

• “Completeness”, difficult to achieve for practical problems

• Reasoning from first principles

• Solving new problems

• Explainability

You want engineering to be correct!
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Great challenges, even in simple engineering tasks
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Great challenges, even in simple engineering tasks

It is about controlling the search!
A case for 

machine learning/subsymbolic AI
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ML/subsymbolic AI offers a solution

Combination of 

• Deep Learning 
(controlling the search process)

• Monte Carlo tree search 
(search method)

Problem is the size of the search space

▪ Go significantly larger search space than 
Chess (Deep Blue) 

▪ Some industrial applications (chip 
manufacturing) have significantly larger 
search space than Go 

▪ Tic-tac-Toe: 9! 

▪ Chess: approx. 10 120 (80 moves)

▪ Go: approx. 10 360 (150 moves)

▪ Chip manufacturing: > 2 500,000

© CC BY-SA 2.0

AlphaGo beats the world's best Go player
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The power of reasoning from first principles and 
qualitative reasoning
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The power of reasoning from first principles and 
qualitative reasoning

▪ Reasoning from first principles, model-based reasoning, causality

▪ E.g., automated diagnosis, repair, configuration

▪ Implemented by logic as representation language and logical reasoning

▪ Complete and correct
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The power of reasoning from first principles and 
qualitative reasoning

▪ Reasoning from first principles, model-based reasoning, causality

▪ E.g., automated diagnosis, repair, configuration

▪ Implemented by logic as representation language and logical reasoning

▪ Complete and correct

Great idea, but ...
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We have a modelling/specification problem

(c) Voestalpine

Engineers cannot specify sufficiently 
detailed physical model for
• Diagnosis and repair 
• Predicting energy consumption
• Predicting wear of tools
• ...

We apply ML/subsymbolic approaches to learn the 
detailed physics/parameters.

Broad AI for diagnosing, designing, and optimizing complex technical system.
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Cluster of Excellence: Bilateral AI
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Vision of a broad AI

Narrow AIs for specific tasks

In contrast, we envision a 

Broad AI
by combining and advancing the strengths of 

sub-symbolic and symbolic AI
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