TU Wien Informatics

Peter Filzmoser

Univ.Prof. Dipl.-Ing. Dr.techn.

Research Areas

  • Multivariate Statistics, Robuste Statistik, compositional Data Analysis
Peter Filzmoser

About

Robust Statistics, Multivariate Analysis, Compositional Data Analysis, Geostatistics

Role

  • Curriculum Commission for Business Informatics
    Principal Member

Note: Due to the rollout of TU Wien’s new publication database, the list below may be slightly outdated. Once the migration is complete, everything will be up to date again.

2023

  • Massive Data Sets – Is Data Quality Still an Issue? / Filzmoser, P., & Mazak-Huemer, A. (2023). Massive Data Sets – Is Data Quality Still an Issue? In B. Vogel-Heuser & M. Wimmer (Eds.), Digital Transformation (Vol. 1, pp. 269–279). Springer Vieweg. https://doi.org/10.1007/978-3-662-65004-2_11

2022

2021

2020

2019

  • A Comprehensive Prediction Approach for Hardware Asset Management / Wurl, A., Falkner, A., Filzmoser, P., Haselböck, A., Mazak, A., & Sperl, S. (2019). A Comprehensive Prediction Approach for Hardware Asset Management. In C. Quix & J. Bernardino (Eds.), Communications in Computer and Information Science (pp. 26–49). Springer Nature Schwitzerland AG 2019. https://doi.org/10.1007/978-3-030-26636-3_2
  • Exploring robustness in a combined feature selection approach. / Wurl, A., Falkner, A., Haselböck, A., Mazak, A., & Filzmoser, P. (2019). Exploring robustness in a combined feature selection approach. In Proceedings of the 8th International Conference on Data Science, Technology and Applications. Scitepress - Science and Technology Publications, LDA. https://doi.org/10.5220/0007924400840091
  • Robust k-means-based clustering for high-dimensional data / Filzmoser, P., Brodinova, S., Ortner, T., Breiteneder, C., & Rohm, M. (2019). Robust k-means-based clustering for high-dimensional data. International Conference on Robust Statistics (ICORS 2019), Guayaquil, Non-EU. http://hdl.handle.net/20.500.12708/122853

2018

2017

  • Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction / Bögl, M., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Leite, R. A., Miksch, S., & Rind, A. (2017). Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction. Computer Graphics Forum, 36(3), 227–238. http://hdl.handle.net/20.500.12708/146628 / Project: VISSECT
  • The paradigm of relatedness / Grad-Gyenge, L., & Filzmoser, P. (2017). The paradigm of relatedness. In W. Abramowicz, R. Alt, & B. Franczyk (Eds.), Business Information Systems Workshops  BIS 2016 International Workshops, Leipzig, Germany, July 6-8, 2016, Revised Papers (pp. 57–68). Springer. https://doi.org/10.1007/978-3-319-52464-1_6
  • Grouping and outlier detection using robust sparse clustering / Brodinova, S., Filzmoser, P., Ortner, T., Zaharieva, M., & Breiteneder, C. (2017). Grouping and outlier detection using robust sparse clustering. Olomouc Days of Applied Mathematics (ODAM 2017), Olomouc, EU. http://hdl.handle.net/20.500.12708/122037 / Project: FAMOUS
  • Finding groups in large and high-dimensional data using a k-means-based algorithm / Brodinova, S., Filzmoser, P., Ortner, T., Breiteneder, C., & Zaharieva, M. (2017). Finding groups in large and high-dimensional data using a k-means-based algorithm. MOVISS - Metabolomic Bio & Data 2017, Vorau, Austria. http://hdl.handle.net/20.500.12708/122033 / Project: FAMOUS
  • Local projection for outlier detection / Ortner, T., Filzmoser, P., Brodinova, S., Zaharieva, M., & Breiteneder, C. (2017). Local projection for outlier detection. Olomouc Days of Applied Mathematics (ODAM 2017), Olomouc, EU. http://hdl.handle.net/20.500.12708/122019 / Project: FAMOUS
  • Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction / Bögl, M., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Leite, R. A., Miksch, S., & Rind, A. (2017). Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction. Eurographics / IEEE VGTC Conference on Visualization (EuroVis 2017), Barcelona, Spain, EU. http://hdl.handle.net/20.500.12708/86509 / Project: VISSECT
  • Robust and sparse clustering for high-dimensional data / Brodinova, S., Filzmoser, P., Ortner, T., Zaharieva, M., & Breiteneder, C. (2017). Robust and sparse clustering for high-dimensional data. In CLADAG 2017 Book of Short Papers. Conference of the CLAssification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS), Milan, Italy, EU. http://hdl.handle.net/20.500.12708/57014 / Project: FAMOUS

2016

  • Guided projections for analysising the structure of high dimensional data / Ortner, T., Filzmoser, P., Zaharieva, M., Breiteneder, C., & Brodinova, S. (2016). Guided projections for analysising the structure of high dimensional data. International Conference of the ERCIM WG on Computational and Methodological Statistics, Seville, Spain, EU. http://hdl.handle.net/20.500.12708/121546
  • Forward Projection for High-Dimensional Data / Ortner, T., Filzmoser, P., Brodinova, S., Zaharieva, M., & Breiteneder, C. (2016). Forward Projection for High-Dimensional Data. International Conference COMPUTER DATA ANALYSIS & MODELING, Minsk, Belarus, Non-EU. http://hdl.handle.net/20.500.12708/86324 / Project: FAMOUS
  • Group Detection in the Context of Imbalanced Data / Brodinova, S., Zaharieva, M., Filzmoser, P., Ortner, T., & Breiteneder, C. (2016). Group Detection in the Context of Imbalanced Data. International Conference COMPUTER DATA ANALYSIS & MODELING, Minsk, Belarus, Non-EU. http://hdl.handle.net/20.500.12708/86323 / Project: FAMOUS
  • Evaluation of robust PCA for supervised audio outlier detection / Brodinova, S., Ortner, T., Filzmoser, P., Zaharieva, M., & Breiteneder, C. (2016). Evaluation of robust PCA for supervised audio outlier detection. In Proceeding of 22nd International Conference on Computational Statistics (COMPSTAT) (p. 12). http://hdl.handle.net/20.500.12708/56525 / Project: FAMOUS
  • Recommendation Techniques on a Knowledge Graph for Email Remarketing / Grad-Gyenge, L., & Filzmoser, P. (2016). Recommendation Techniques on a Knowledge Graph for Email Remarketing. In eKNOW 2016, The Eighth International Conference on Information, Process, and Knowledge Management (pp. 51–56). IARIA. http://hdl.handle.net/20.500.12708/41458

2015

  • Integrating Predictions in Time Series Model Selection / Bögl, M., Aigner, W., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Miksch, S., & Rind, A. (2015). Integrating Predictions in Time Series Model Selection. In J. Yang, E. Bertini, N. Elmqvist, T. Dwyer, X. Yuan, & H. Carr (Eds.), EuroVA 2015 EuroVis Workshop on Visual Analytics (pp. 73–78). The Eurographics Association. https://doi.org/10.2312/eurova.20151107 / Project: HypoVis
  • Visually and Statistically Guided Imputation of Missing Values in Univariate Seasonal Time Series / Bögl, M., Aigner, W., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Miksch, S., & Rind, A. (2015). Visually and Statistically Guided Imputation of Missing Values in Univariate Seasonal Time Series. In J. Yang, E. Bertini, N. Elmqvist, T. Dwyer, X. Yuan, & H. Carr (Eds.), Poster Proceedings of the IEEE Visualization Conference 2015 (p. 2). http://hdl.handle.net/20.500.12708/56130
  • Recommendations on a Knowledge Graph / Grad-Gyenge, L., Filzmoser, P., & Werthner, H. (2015). Recommendations on a Knowledge Graph. In MLRec 2015 : 1st International Workshop on Machine Learning Methods for Recommender Systems (pp. 13–20). http://hdl.handle.net/20.500.12708/56430
  • Simulation of Robust PCA for Supervised Audio Outlier Detection / Brodinova, S., Ortner, T., Filzmoser, P., Zaharieva, M., & Breiteneder, C. (2015). Simulation of Robust PCA for Supervised Audio Outlier Detection. In Eighth International Workshop on Simulation: Book of Abstracts. International Workshop on Simulation, Vienna, Austria. http://hdl.handle.net/20.500.12708/56521 / Project: FAMOUS
  • Evaluation of Robust PCA for Supervised Audio Outlier Detection / Brodinova, S., Ortner, T., Filzmoser, P., Zaharieva, M., & Breiteneder, C. (2015). Evaluation of Robust PCA for Supervised Audio Outlier Detection (CS-2015-2). http://hdl.handle.net/20.500.12708/38539 / Project: FAMOUS

2014

  • Spreading Activation for Rating Estimation in Recommender Systems / Grad-Gyenge, L., Werthner, H., & Filzmoser, P. (2014). Spreading Activation for Rating Estimation in Recommender Systems. The 15th International Conference on Electronic Commerce and Web Technologies (EC-Web 2014), Munich, Germany, EU. http://hdl.handle.net/20.500.12708/85935
  • Visual Analytics Methods to Guide Diagnostics for Time Series Model Predictions / Bögl, M., Aigner, W., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Miksch, S., & Rind, A. (2014). Visual Analytics Methods to Guide Diagnostics for Time Series Model Predictions. In Proceedings of the 2014 IEEE VIS Workshop on Visualization for Predictive Analytics (p. 4). http://hdl.handle.net/20.500.12708/55730

2013

  • Visual Analytics for Model Selection in Time Series Analysis / Bögl, M., Aigner, W., Filzmoser, P., Lammarsch, T., Miksch, S., & Rind, A. (2013). Visual Analytics for Model Selection in Time Series Analysis. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2237–2246. https://doi.org/10.1109/tvcg.2013.222 / Project: HypoVis
  • Visual Analytics for Model Selection in Time Series Analysis / Bögl, M., Aigner, W., Filzmoser, P., Lammarsch, T., Miksch, S., & Rind, A. (2013). Visual Analytics for Model Selection in Time Series Analysis. IEEE Conference on Visual Analytics Science and Technology (IEEE VAST), Atlanta, GA, USA, Non-EU. http://hdl.handle.net/20.500.12708/85611 / Project: HypoVis
  • Robust variable selection in linear regression with compositional explanatory variables / Schroeder, F., Braumann, A., Filzmoser, P., & Hron, K. (2013). Robust variable selection in linear regression with compositional explanatory variables. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria (p. 55). http://hdl.handle.net/20.500.12708/41259

2012

2011

2010

2009

2008

 

Note: Due to the rollout of TU Wien’s new publication database, the list below may be slightly outdated. Once the migration is complete, everything will be up to date again.

  • Talentförderungsprämie (Sektion "Wissenschaft") vom Land Oberösterreich
    2003 / Austria
  • Mobilitätsstipendium der CA für hervorragende Dissertation
    2001 / Austria

Soon, this page will include additional information such as reference projects, activities as journal reviewer and editor, memberships in councils and committees, and other research activities.

Until then, please visit Peter Filzmoser’s research profile in TISS .