Marcel Moosbrugger
Univ.Ass. Dipl.-Ing. / BSc BA (Hons)
Role
-
PreDoc Researcher
Formal Methods in Systems Engineering, E192-04
Courses
2023W
- Formal Methods in Computer Science / 185.A93 / UE
- Formal Methods in Computer Science / 185.291 / VU
Publications
- This Is the Moment for Probabilistic Loops / Moosbrugger, M., Stankovic, M., Bartocci, E., & Kovacs, L. (2022). This Is the Moment for Probabilistic Loops. Proceedings of the ACM on Programming Languages, 6(OOPSLA2), 1497–1525. https://doi.org/10.1145/3563341
-
Moment-Based Invariants for Probabilistic Loops with Non-polynomial Assignments
/
Kofnov, A., Moosbrugger, M., Stankovič, M., Bartocci, E., & Bura, E. (2022). Moment-Based Invariants for Probabilistic Loops with Non-polynomial Assignments. In E. Ábrahám & M. Paolieri (Eds.), Quantitative Evaluation of Systems (pp. 3–25). Springer. https://doi.org/10.1007/978-3-031-16336-4_1
Projects: ARTIST (2021–2026) / ProbInG (2020–2025) - Solving Invariant Generation for Unsolvable Loops / Amrollahi, D., Bartocci, E., Kenison, G., Kovács, L., Moosbrugger, M., & Stankovič, M. (2022). Solving Invariant Generation for Unsolvable Loops. In Static Analysis: 29th International Symposium, SAS 2022 (pp. 19–43). https://doi.org/10.1007/978-3-031-22308-2_3
- The Probabilistic Termination Tool Amber / Marcel Moosbrugger, Ezio Bartocci, Katoen, J.-P., & Laura Kovács. (2021). The Probabilistic Termination Tool Amber. In Formal Methods. FM 2021 (pp. 667–675). https://doi.org/10.1007/978-3-030-90870-6_36
- Automated Termination Analysis of Polynomial Probabilistic Programs / Moosbrugger, M., Bartocci, E., Katoen, J.-P., & Kovács, L. (2021). Automated Termination Analysis of Polynomial Probabilistic Programs. In Programming Languages and Systems (pp. 491–518). Springer. https://doi.org/10.1007/978-3-030-72019-3_18
-
Automating termination analysis of probabilistic programs
/
Moosbrugger, M. (2020). Automating termination analysis of probabilistic programs [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.77501
Download: PDF (710 KB)