
Sustainability in
Software Engineering

Franz Wotawa
TU Graz, Institute of Software Engineering and Artificial Intelligence

wotawa@tugraz.at

Motivation
• The energy consumption of computers depends on the

hardware AND the running software
• Example: Function isElement(a)

• Checking the content of variable a to be an element of a collection
(list,…)

isElement(a) {
for i=1 to length(A) do:

if (a==A[i]) then return true;
end for;
return false; }

isElement(a) {
if (a==A[hash(a)]) then

return true;
else

return false; }

O(n) n=length(A) O(1)

isElement(a) {
for i=1 to length(A) do:

if (a==A[i]) then return true;
end for;
return false; }A:

.zero 4000
isElement(int):
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-20], edi
mov DWORD PTR [rbp-4], 0
jmp .L2
.L5:
mov eax, DWORD PTR [rbp-4]
cdqe
mov eax, DWORD PTR A[0+rax*4]
cmp DWORD PTR [rbp-20], eax
jne .L3
mov eax, 1
jmp .L4
.L3:
add DWORD PTR [rbp-4], 1
.L2:
cmp DWORD PTR [rbp-4], 999
jle .L5
mov eax, 0
.L4:
pop rbp
ret

isElement(a) {
if (a==A[hash(a)]) then

return true;
else

return false; }
A:
.zero 4000
hash(int):
push rbp
.....
pop rbp
ret
isElement(int):
push rbp
mov rbp, rsp
sub rsp, 8
mov DWORD PTR [rbp-4], edi
mov eax, DWORD PTR [rbp-4]
mov edi, eax
call hash(int)
cdqe
mov eax, DWORD PTR A[0+rax*4]
cmp DWORD PTR [rbp-4], eax
sete al
test al, al
je .L4
mov eax, 1
jmp .L5
.L4:
mov eax, 0
.L5:
leave
ret

COMPARE RESOURCES REQUIRED
AFTER BEING EXECUTED!

compilation compilation

Motivation

• Runtime and energy consumption depend on the number of
statements to be processed:

• The proper data structure for the right job matters
• Need to reduce the overall number of statements to be executed

• Need to measure energy consumption (have an example later)
• But, is this all?

What is the knowledge students have
about sustainable SE?
• Carried out a survey (lecture on Software Technology at TU

Graz during the summer term 2025), asking 60 students about
their knowledge and beliefs regarding sustainability in software
engineering.

77%

23%

(D1) What is your gender?

Male

Female

0%

42%

25%

33%

(D2) What is your age?

<=21

22-23

24-25

>=26

What is the knowledge students have
about sustainable SE?

8%

92%

(B3) Have you already taken courses
dealing with sustainable software

engineering in the past?

Yes

No

15%

85%

(B4) Have you already worked as a
programmer considering sustainable

software engineering principles?

Yes

No

What is the knowledge students have
about sustainable SE?

34%

66%

(B1) Do you know countermeasures
for reducing the overall energy
consumption of development?

Yes

No
68%

32%

(B2) Do you know countermeasures
for reducing the energy consumption

of programs?

Yes

No

Objectives

• Answer the following questions:
• Why does sustainability matter for programs (and software

engineering)
• What is sustainable software engineering?
• How can we support sustainability in the case of software engineering?

• The focus is on software engineering, not the use of software to
improve sustainability

Sustainability and software
• Important to note

• Software is becoming increasingly important
• E.g., see Goldman Sachs, Software Is Taking Over the Auto Industry, Nov. 2022

(https://www.goldmansachs.com/intelligence/pages/software-is-taking-over-the-auto-industry.html)
• ICT accounts for about 2-4% of all global GHG emissions, and software is the backbone
• When developing software that has a low energy footprint, we are able to save GHG

emissions!

• United Nations (UN)’s Brundtland report defines sustainable development as
the ability to “meet the needs of the present without compromising the ability of
future generations to satisfy their own needs”. According to the UN, sustainable
development needs to satisfy the requirements of three dimensions, which are
society, the economy, and the environment.

Sustainable Software Engineering
• Microsoft:

“Sustainable Software Engineering is an emerging discipline at the intersection of climate
science, software, hardware, electricity markets, and data center design. The Principles of
Sustainable Software Engineering are a core set of competencies needed to define, build,
and run sustainable software applications.“

• Alexander Belokrylov (The Power Of Sustainable Software, Forbes, Aug 18, 2022):

 „Sustainable software engineering (or sustainable software development) is becoming
more popular nowadays. This approach aims to design software that will increase overall
application efficiency and reduce energy and space consumption requirements.“

Some definitions
From: Naumann, S., Dick, M., Kern, E. et al.: The GREENSOFT model: a reference model for green and sustainable software and
its engineering. SUSCOM 1(4), 294–304 (2011). doi:10. 1016/j.suscom.2011.06.004

• Sustainable Software is software whose development, deployment, and usage results in minimal direct
and indirect negative impacts or even positive impacts on the economy, society, human beings, and the
environment.

• A prerequisite for sustainable software is a sustainable development process, which refers to
considering environmental and other impacts during the software life cycle and the pursuit of the goals of
sustainable development.

• Building on this, we can define Sustainable Software Engineering as the art of developing sustainable
software through a sustainable software engineering process.

Note that sustainable software engineering can be seen as an emerging discipline at the intersection of
climate science, software, hardware, electricity markets, and data center design

Dimensions of software sustainability
From: C. Calero, M. Piattini: Sustainable Computing:
Informatics and Systems 16 (2017) 117–124.
https://doi.org/10.1016/j.suscom.2017.10.011

• Human sustainability: how software development and
maintenance affect the sociological and psychological
aspects of the software development community and its
individuals. This encompasses topics such as: Labor rights,
psychological health, social support, social equity and
livability.

• Economic sustainability: how the software lifecycle
processes protect stakeholders’ investments, ensure
benefits, reduce risks, and maintain assets.

• Environmental sustainability: how software product
development, maintenance and use affect energy
consumption and the usage of other resources.
Environmental sustainability is directly related to a software
product characteristic that we call “software green ability.”

C. Calero, M. Piattini / Sustainable Computing: Informatics and Systems 16 (2017) 117–124 119

Fig. 1. Sustainability levels.

Fig. 2. Software Sustainability dimensions.

4.1. Search information

The results shown herein have been extracted from the main
workshops and conferences related to green and sustainable
software: Green and Sustainable Software (GREENS), Software
Engineering Aspects of Green Computing (SEAGC), Green in and by
Software Engineering (GIBSE), Requirements Engineering for Sus-

tainable Systems (RE4SUSY), Energy Aware Software-Engineering
and Development (EASED), Sustainable Software for Science: Prac-
tice and Experiences (WSSSPE), Measurement and Metrics for
Green and Sustainable Software (MEGSUS), the Green In Soft-
ware Engineering workshop (GINSENG) and ICT for Sustainability
(ICT4S). We have analyzed the contributions made to these forums
between 2012 (when the first workshops began) and 2015 (the last

Software sustainability
• The main goal of Green in Software

Engineering is to include green
practices in both software
development and the other activities
that are part of Software
Engineering.

• ISO/IEC/IEEE defines software
engineering as “the application of a
systematic, disciplined, quantifiable
approach to the development,
operation, and maintenance of
software; that is, the application of
engineering to software”

120 C. Calero, M. Piattini / Sustainable Computing: Informatics and Systems 16 (2017) 117–124

Fig. 3. From Software Sustainability to Green in Software.

Green Process Green
Product or

Service

Green
Product’ or

Service’Development

Green Process

Maintenance

Green in SoŌware Engineering
Fig. 4. Green in Software Engineering.

editions held). It should be noted that not all of them had editions
in all the years reviewed (shown in grey in the tables below).

We have also reviewed some of the main journals related
to the area: IEEE Software, Journal of Systems and Software
(JSS), IT Professional, Information and Software Technology Jour-
nal (IST), Communications of the ACM (CACM), IEEE Transactions on
Software Engineering (TSE) and ACM Transactions Software Engi-
neering and Methodology (TOSEM). The search took place at the
beginning of July 2016, and the results presented for 2016 corre-
spond with January to July (even though for some of the journals
issues for the next months were available). The only exceptions
to this are: (1) IEEE Software, for which the last issue reviewed
corresponds to July-August and (2) IT Professional, for which the
last issue available corresponds to June).We included a paper in
our classification if it was about green in software, whereas those
papers about green by software were excluded.

The process was conducted by both authors. As a first step, the
first author discovered a list of all the contributions to the work-
shops and conferences and a selection of the journal papers related
to software sustainability, classifying each one according to the
sustainability dimension, the SWEBOK area or a general topic in
the case of its being out of the scope studied. This was done by
reviewing the abstracts of the papers, although the complete paper
was read when necessary. The second author then supervised the
classification, and this resulted in a coincidence of 90% between
both authors and a list of agreements/disagreements. Any disagree-

ments were solved by looking at and discussing the contents of the
paper under dispute.

The final result of this protocol was the classification of all the
papers. The main conclusions reached will be explained in the fol-
lowing section.

4.2. Searchresults

As can be seen in Table 1, 45% of the total number of papers
obtained from the forums studied were selected. We do not provide
the complete list of papers because we have reviewed all the papers
published in the forums and journals mentioned. It should be noted
that any workshop keynotes have been eliminated and that, in the
case of the ICT4S, we have only reviewed the papers related to those
categories used for classifications purposes in this paper.

The sources from which the most significant works were
selected were GREENS and RE4SUSY (19 and 18 papers, respec-
tively), followed by IEEE Software (11), EASED and WSSSPE (7),
SEAGC (6) and MEGSUS and ICT4S (5). The other sources provided
an insignificant number of works. In fact, two of them (GIBSE and
TOSEM) did not provide us with any papers since the papers in them
were, in the case of GIBSE, about green by software (our exclusion
criteria) or, in that of TOSEM, they contained no papers on the topic.

In both of the cases commented on (Table 1a and b) it would
appear to be evident that conferences and workshops have, to date,
been the forums chosen for publication, rather than journals. This

Summary of the discussion so far
• In a closer sense, software sustainability captures ”Green (in)

Software” and focuses on the development and maintenance of
software that contributes to the reduction of GHG emissions!

• Reduction during development: e.g., reduce compilations, and
minimize relearning in case of machine learning-based software
applications

• Reduction during use: Develop programs that have a minimized
GHG footprint!

• Might be more important because of multiple program executions (1
development but n executions)

Research impact / Mapping studies
and reviews

9 12 11 11

21
29

3
0

10

20

30

40

2006 2007 2008 2009 2010 2011 2012

Papers

SBQS, October 17–19, 2018, Curitiba, Brazil B. Mourão et al.

59% of the publications carried out case studies (35%) or con-
trolled experiments (24%). 31% of the studies were classi�ed as
follows: Non-empirical research (11%), Multi-method (7%), Survey
(7%) and Meta-analysis (4%). Another 13% did not specify any re-
search method. This result shows that the controlled experiments
and case studies are the most applied research methods by the pri-
mary studies. A similar result was reported by Anwar and Pfahl
[2].

When correlating the research types with the research methods,
it is possible to observe that there is a predominance of solution
proposals in the majority of the primary studies analyzed. 59% of
papers applied both case studies and controlled experiments. This
rati�es that the Green SE �eld have increased in attention by the
research community.

From a perspective of which research types are most adopted
by research methods, it can be observed from Figure 6 that both
controlled experiment and case study research have been employed
as empirical evaluation methods, at a same proportion, in solution
proposals (75%), followed by evaluation studies (25%).

Figure 6: Research types x Research methods

RQ6:Which application domainswere considered in the eval-
uation?

Only 24% of the primary studies addressed any application do-
main. Most of them (61%) presented results of applications in the
mobile systems domain, followed by applications in the cloud sys-
tems domain (22%). Another 18% focused their investigations on
distributed systems, legacy systems and IoT, at a same proportion.

These numbers potentially indicate that researchers have given
considerable attention to mobile devices. We believe that the main
reason for preference over this domain is due to the recent growth
of the mobile applications market and the research for the reduction
of their energy consumption.

RQ7: Which publication venues are most commonly used?

By analyzing the most popular publication venues in researches
focused on Green SE, we could observe a mainstream concentra-
tion of primary studies from the ICSE main track and the Greens
Workshop – held at ICSE (13.5%, each). The remainder (73%) is dis-
tributed in several other conferences and journals. In all, 41 di�erent
publication venues have been identi�ed.

Similar results are reported in [12, 13]. In addition, other authors
[13, 16] observed a small distribution of publications in journals
when compared to conferences and workshops. Penzenstadler et al.
[16] further states this is likely due to the fact that the research
community is still forming.

In relation to the growth in the number of publications in recent
years, the primary studies were published between 2003 and 2017.
Most of them were published in the last �ve years. As Figure 7
shows, there was a small number of publications up to the year
2012, followed by a signi�cant increase in 2013. Speci�cally, in this
last year, the number of publications doubled and remained constant
over the next two years. A considerable drop can be observed in
2016, followed by a further increase the following year.

Figure 7: Number of papers per year.

We believe this is one of the key evidences of the increasing
interest of the research community in Green SE. These numbers
show a clear indication of research opportunities in this �eld. The
results also suggest the need for more publications in journals
focusing on sustainable software.

RQ8: What is the distribution between academia and indus-
try?

Most researches have industry input (56%). The academy distri-
bution is comparatively smaller (5%). The studies also revealed that
the contribution of both industry and academia is 20%. It was not
possible to identify the distribution in 19% of the primary studies.

Our �ndings con�rm that the community remains interested
and focuses on solving industry-related issues. Despite this �nd-
ing, when we analyze this RQ with the evidence types and the
research types, together, we observe that there is still a need for the
industry professionals participation to support a better targeting
of researches.

6 THREATS TO VALIDITY
In this study, the following potential threats to validity were identi-
�ed:

Keywords bias: The set of keywords selected in the search may
not be the most representative of the domain. Therefore, it may
not have returned the best set of papers aimed at Green SE. The
mitigation of this bias, however, is di�cult: Green SE is a relatively
new discipline and there are reports that the confusion of the lack of
conceptual terms and understandings hampers the accuracy of the
searches for researches that permeate the domain. We attempted to

From: Birgit Penzenstadler, Veronika Bauer,
Coral Calero, Xavier Franch, Sustainability in
Software Engineering: A Systematic Literature
Review, in Proceedings of the International
Conference on Evaluation and Assessment in
Software Engineering (EASE), Jan 2012,
Review, DOI: 10.1049/ic.2012.0004

From: Brunna C. Mourão, Leila Karita, Ivan do
Carmo Machado, Green and Sustainable
SoVware Engineering - a SystemaXc Mapping
Study, SBQS, October 17–19, 2018, CuriXba,
Brazil,
h^ps://doi.org/10.1145/3275245.3275258

The GREENSOFT Model
From: Stefan Naumann, Eva Kern, Markus Dick and Timo Johann, Sustainable Software
Engineering: Process and Quality Models, Life Cycle, and Social Aspects, in L.M. Hilty and
B. Aebischer (eds.), ICT Innovations for Sustainability, Advances in Intelligent Systems and
Computing 310, DOI 10.1007/978-3-319-09228-7_11

• A sustainable software product ideally meets three conditions:
• The software is produced in a way that meets sustainability objectives.
• The software has minimal negative social and environmental impacts

during its usage (first-order effects).
• The software functionality reinforces sustainable development or at

least has no negative impacts on society or the environment (second-
order and systemic effects).

The GREENSOFT Model (cont.)

Summarizing these definitions, a sustainable software product ideally meets
three conditions:

• The software is produced in a way that meets sustainability objectives.
• The software has minimal negative social and environmental impacts during its

usage (first-order effects).
• The software functionality reinforces sustainable development or at least has no

negative impacts on the society or environment (second-order and systemic
effects).

The GREENSOFT Model (Fig. 1) classifies and sorts the described characteristics
of sustainable software and its engineering [1]. This reference model contains four
parts: the life cycle of software products; criteria and metrics that represent and
measure sustainability aspects directly and indirectly related to the software
product; procedure models for the different phases; and recommendations for
action as well as tools. The model is described in detail in [1].

3 Related Work

Based on the definitions in Sect. 2 and the GREENSOFT Model, we summarize
related work. A good overview of sustainable software engineering can be found in
[4]: here, the author gathered 96 relevant publications on sustainable software
engineering. They also discussed the question of what sustainability means in (and
for) software engineering [5]. Amsel et al. [6] assert that sustainable software

Fig. 1 The GREENSOFT reference model [3]

Sustainable Software Engineering … 193

A quality model for sustainable
software
• To decide whether

or not software is
sustainable,
appropriate criteria
are required

• Quality aspects:
Efficiency,
Reusability,
Modifiability, and
Usability (extended
to sustainability)

Common Quality Criteria. The common criteria arise from the well known and
standardized quality aspects for software, issued by the International Organization
for Standardization [21]. The proposed quality model takes such aspects into
account as Efficiency, Reusability, Modifiability, and Usability. These quality
aspects extend to the field of sustainable development [8].

The quality aspects belonging to Efficiency are Runtime Efficiency, CPU-
Intensity, Memory Usage, Peripheral Intensity, Idleness, and Number of Methods.
Runtime Efficiency considers the time needed to finish executing depending on its
implementation. In this context, Capra et al. [22] present the relation between
faster application and higher energy consumption. The aspects CPU-Intensity,
Memory Usage and Peripheral Intensity cover the resource utilization caused by
software execution. In fact, the effects of the intensity of the resource consumption
on the resulting energy consumption or even on system durability need to be
analyzed. Idleness describes how often the system is idle. This aspect is relevant to
certain types of software systems, such as virtual servers [11]. The total Number of
Methods reflects the size of applications [22].

Fig. 2 Quality model for sustainable software [3]

Sustainable Software Engineering … 195

Process Models of Sustainable Software Engineering
(1) Process-Centric Software Sustainability
• Sustainability Management Process. The management process includes a preliminary phase, a planning

phase, a monitoring phase, and a supplier sustainability control. In the preliminary phase, the principles and
criteria for sustainability are established. In the planning phase, sustainability activities of the development
process are indicated, and the corresponding requirements and necessary resources are planned. Afterward,
the sustainability of the deployed activities and their conformity with the requirements are monitored. The last
part of the management process (supplier sustainability control) deals with sustainability policies and supply and
service requirements. Here, an agreement must be reached, and the supplier’s sustainability needs to be
monitored.

• Sustainability Engineering Process. The engineering process concerns suitable tools and methods to enable
and support a sustainable development process. In this context, sustainable issues and green principles for
development are defined, applied, and analyzed. Energy and resource consumption are factors that impact
sustainability and, thus, should be identified at the start of the engineering process. In the next step, the impacts
of these effects should be analyzed in order to set sustainability objectives for the development process
subsequently. In addition to the impacts of the process itself, the impacts of change requests on sustainability
should be determined.

• Sustainability Qualification Process. The qualification process applies to external resources such as
engineering and management support tools. Aimed at sustainable products, these external resources need to
be sustainable as well. In order to ensure their quality, a qualification strategy, an implementation plan for the
strategy, documentation of the outcomes of the qualification, and a qualification report are required.

Process Models of Sustainable Software Engineering
(2) Agile and Sustainable Software Engineering

• Not a whole process but an extension
• Two main activities:

• Process Assessment (Focus on the sustainability of the software development
process)

• Process Assessment is a continuous activity alongside the software development process. It is meant
to collect and edit data from the process that can be used for a carbon footprint calculation or even for
a life cycle assessment

• Sustainability Reviews and Previews (Focus on the sustainability of the software
product)

• Reviews and Preview meetings are conducted regularly

• Three roles: the Customer Representative, the Development Team, and
the Sustainability Executive

However, can we do better?

• Focus on the automation of producing sustainable software!

Genetic
improvement (GI)
Genetic programming/algorithms applied
to sustainable SE

Motivation
• The largest hurdle in producing energy-efficient software is the developer’s disconnect between the

source code they write and the energy that will be consumed from the compiled product they deliver.
• Without a deep understanding of how a particular compiler works, along with an equally deep

understanding of how much energy a given instruction will consume, the problem remains difficult for
many developers.

• It has been found that metrics previously believed to guide developers to more energy efficient solutions
could be better at doing so.

• Subtle changes, such as introducing inline methods, swapping API implementations, and constructing
semantically equivalent (but structurally inequivalent) algorithms, have all been shown to influence
energy consumption.

• However, this influence is difficult to determine outside of the ad hoc and inefficient process of trial
and error.

• Tools have to be developed to guide users to energy-inefficient areas of their software.
• Hence, a method of decreasing software’s energy consumption lies in automated processes.

Using genetic improvement in
sustainable software engineering
• Objective: Optimize the energy

consumption of programs but still
keep the required functionality

• Idee: Change the program until the
energy consumption is lowest

• Potential solution: Use genetic
algorithms/programs for
optimization (ako Search-Based
Software Engineering)

Program PTC 1TC 1TC 1TC 1TC 1

Pass ✔
Fail ✘

Energy
consumption

+

Apply
changes

Program P’
P’ behaves like
P but with a
lower energy
consumption

"

#

Genetic programming
• Population where each element has a

chromosome
• Apply operators like

• Selection based on
a fitness function

• Crossover
• Mutation

to generate new populations

Genetic programming

p1

p2
p3

p4

P’1mutate

P5crossover

P’1

p3
p2

P5
select

populaXoni populationi+1

• Represent problem as
chromosomes comprising
genes. A set of
chromosomes is called a
population

• Chromosomes can be
stated as strings (or any
other collection

0 0 0 0 0 0

1 1 1 1 1 1

1 0 1 0 1 1

C1

C2

C3

1 1 1 0 0 0

crossover

1 0 1 1 1 1
muta+on

Genetic algorithm (GA)
• Crossover:

• Selection of 2 arbitrary chromosomes
• Take genes from both to generate a new chromosome

• Mutation:
• Select 1 arbitrary chromosome
• Change 1 or more genes for generating a new chromosome

• Selection of chromosomes:
• Make use of a fitness function

Fitness function

• Maps chromosomes to a particular fitness value

0 0 0 0 0 0
f(.)

0.923

Genetic algorithm
IniXalize PopulaXon

(Generate populaXon randomly)

Select Population using fitness
function

Perform crossover

Perform mutation

Stop
criterion
reached?

yes

no

In every step we may have
a population of same size.

Use fitness function to
select n chromosomes.

We may generate a lot of
muta:ons and other

offsprings using muta:on
operators and crossover.

We stop when reaching a
criterion, e.g., one

chromosome reached a
certain fitness level.

How to use Genetic Algorithms /
Programming for reducing energy
consumption?

• Program and its Genotype Representation:
• Source code conversion
• Select lines that might be changed
• A gene represent sequences of selected lines
• Introduce source code change operations (for

mutation)
• DELETE (delete a line of code)
• REPLACE (replace one line with another)
• COPY (copy a line to another location)
• Assumption: All required information is already in the

available source code! Consider similar statements only.
• Example: a while loop (e.g., x>5) can be replaced with the

condition of another while loop (e.g., y==2)

Reducing Energy Consumption Using Genetic
Improvement

Bobby R. Bruce
University College London

London

United Kingdom

r.bruce@cs.ucl.ac.uk

Justyna Petke
University College London

London

United Kingdom

j.petke@ucl.ac.uk

Mark Harman
University College London

London

United Kingdom

mark.harman@ucl.ac.uk

ABSTRACT
Genetic Improvement (GI) is an area of Search Based Soft-
ware Engineering which seeks to improve software’s non-
functional properties by treating program code as if it were
genetic material which is then evolved to produce more op-
timal solutions. Hitherto, the majority of focus has been
on optimising program’s execution time which, though im-
portant, is only one of many non-functional targets. The
growth in mobile computing, cloud computing infrastruc-
ture, and ecological concerns are forcing developers to fo-
cus on the energy their software consumes. We report on
investigations into using GI to automatically find more en-
ergy e�cient versions of the MiniSAT Boolean satisfiability
solver when specialising for three downstream applications.
Our results find that GI can successfully be used to reduce
energy consumption by up to 25%.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

Keywords
Search based software engineering, SBSE, genetic improve-
ment, GI, optimisation, energy optimisation, energy e�-
ciency, energy consumption, Boolean satisfiability

1. INTRODUCTION
Less than a decade ago the quality of software (outside of
end-user design preferences) could broadly be described as
the extent to which software met its specification while min-
imising the prevalence of bugs and usage of traditional com-
puter resources such as CPU time and memory allocation.
The growth in two new technologies, mobile computing de-
vices and cloud services, has led to a new environment for
software engineers where they must now consider the en-
ergy an application consumes; the quality of software is
now measured in Joules, as well as bug counts, seconds,
and megabytes. At present there are more smartphones in

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 16, 2015, Madrid, Spain

c� 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754752

the world than personal computers [22], each containing a
limited store of energy between charges that must be used
e�ciently. The energy required to run large server clusters
has grown considerably in the last decade, estimated to be
between 1.1% to 1.5% of global electricity consumption in
2010 [26], putting strain on energy suppliers and the budgets
of those responsible for purchasing this energy [7]. The total
ICT infrastructure generated 1.9% of global CO2 emissions
in 2011 [5] (larger than the entire United Kingdom estimated
at 1.47% for the 2010-2014 period [42]) indicating that com-
puter science has a role to play in mitigating climate change.
Thus we believe it important that software engineers find

ways of programming computers with energy e�ciency in
mind to appease the demands from consumers for longer
battery life, from companies to reduce their energy bills,
and from society’s desire to minimise humanity’s impact on
the environment.
One of the largest hurdles in producing energy-e�cient

software is the developer’s disconnect between the source
code they write and the energy that will be consumed from
the compiled product they deliver [33]. Without a deep un-
derstanding of how a particular compiler works, along with
an equally deep understanding of how much energy a given
instruction will consume, the problem remains di�cult for
many developers. It has been found that metrics previously
believed to guide developers to more energy e�cient solu-
tions are, in reality, poor at doing so [38]. Subtle changes,
such as introducing inline methods [41], swapping API im-
plementations [33], and constructing semantically equivalent
(but structurally inequivalent) algorithms [8] have all been
shown to influence energy consumption. However this influ-
ence is di�cult to determine outside of the ad hoc and inef-
ficient process of trial-and-error. Tools have been developed
to guide users to energy-ine�cient areas of their software [2,
11, 30, 19] though the developer retains responsibility for
rectifying these ine�ciencies.
We suggest that the most under explored method of de-

creasing software’s energy consumption lies in automated
processes. Such processes would allow developers to focus
solely on meeting the specification requirements with wor-
ries about non-functional attributes like energy consumption
left to an algorithm capable of refactoring software to a more
optimal state.
Genetic Improvement (GI) [20, 25, 27, 28, 29, 36, 37, 45,

44] is a Search Based Software Engineering (SBSE) tech-
nique [21] which treats program code as if it were genetic
material that can then be evolved to produce optimised so-
lutions. GI has previously been found e↵ective at optimis-

1327

Genetic improvement (cont.)
• Fitness Function: Energy consumption
The fitness of a candidate solution is determined by measuring the total energy consumed (see Section 2.4) across all
tests selected from the training set (see Section 2.3) when using the original unmodified software divided by the energy
consumed by the phenotype across the selected tests. Thus, a fitness greater than 1 indicates a solution that consumes
less energy, while a fitness less than 1 indicates a solution that consumes more energy.

• Selection:
Each selected test case can either be passed or failed. A test is deemed to have passed when the modified version
categorizes a test as satisfiable or unsatisfiable, with that categorization equal to the categorization produced by the
original MiniSAT. We use the original code as an oracle to guide the GI to functionally correct solutions. When a test is
found to have failed, the energy consumption or that test case is not included in the fitness evaluation, and instead, an
appropriate penalty is applied. To be selected for the next generation, a solution must have a fitness of above 0.95, have
passed an appropriate number of the selected test cases, and be in the top 50% of the population.

Genetic improvement (cont.)
• Crossover:
Crossover is carried out by selecting one parent based on fitness and another chosen randomly from the
selected individuals. Due to the simplicity of the genotype representation, crossover consists of appending
one genotype to another, producing a new individual. Crossover is carried out until the population size, after
selection, has doubled.

• Mutation:
After crossover, mutations are applied to the selected genotypes. Prior investigations have shown GI
frameworks such as this can lead to bloat, resulting in effective solutions being encumbered with ineffective
mutations. For this reason, elitism has been implemented so that the top 5 solutions in each generation
move forward to the next without mutation. The remaining selected individuals have a 50% chance of
having a mutation applied. Mutations consist of adding a random DELETE, REPLACE, or COPY
modification to the genotype. If the population after crossover has not met the preset population size, then
single, random mutations are added as entirely new genotypes until the population size is met.

Genetic improvement (cont.)
• Carrying out the experiments

• Program to be optimized: MiniSAT (MiniSAT2-070721)
• MiniSAT applications: CIT, Ensemble, AProVE
• Test cases during the search are selected depending on the application

• Estimation of the energy consumption:
• Intel Power Gadget API for Mac OS X2, which estimates the energy

consumption of 2nd Generation and higher Intel Core processors
• Intel Power Gadget uses drivers and libraries to read the processor’s special

energy model-specific registers (MSRs) over a specified time period. These
register readings are then used to calculate the total energy consumed.

Experimental results

• Energy consumption reduction using GI

yse the modifications made to the software to produce the
champion solutions in an attempt to determine whether any
similarities can be found. Where solutions are found to be
specialised, we investigate why modifications applied to one
champion are less e↵ective (or ine↵ective) when used on an-
other MiniSAT downstream application.

In order to answer RQ3 (Does reduction in energy con-
sumption correlate to reduction in execution time when GI
is applied?), we take each experiment champion and mea-
sure the total time required to compute all tests within their
respective test set. These times are then compared to the
execution time of the original, unmodified software when
computing the test set to give a percentage improvement of
execution time. This can then be compared to the energy
percentage improvement. If the energy improvements are
comparable to improvements in execution time we can add
weight to the argument the two are related, if not we can
claim this relationship is not valid in all cases. To obtain
a deeper understanding of the time-energy relationship we
also sample random solutions from each experiment (20 from
each experiment, 60 in total) and measure their execution
times and energy consumption estimates on their respective
test sets. Analysing the data we are able to determine how
correlated these readings are.

The following subsections describe the MiniSAT down-
stream applications we specialise for. We have carefully se-
lected three applications areas we believe are suitably diverse
in real-world or academic usage. For each we describe the
purpose of the downstream application and give a descrip-
tion of the training and test set provided.

3.1 Specialising for CIT
Combinatorial Interaction Testing (CIT) is a black box

test sampling technique used to test highly configurable soft-
ware [34]. With highly configurable software, such as database
management systems and architectures like software prod-
uct lines, testing all configuration combinations is impossi-
ble though it remains important to ensure no combination
of configuration variables exist that results in the software
failing. CIT’s role is to produce a test suite which su�-
ciently covers the configurations while minimising the execu-
tion time of such tests. CIT has been successfully translated
and run as a Boolean satisfiability problem [1, 34], though
running these SAT problems is a computationally intensive
task. In 2014 Petke et al. [37] optimised MiniSAT to reduce
the computation time for this domain, we aim to reduce the
energy consumption.

The CIT training set contains 58 tests, 23 of which are
satisfiable, spread evenly over 4 bins. The mean execution
time for bins 1 and 2 is 3.33s, the mean execution time for
bins 3 and 4 is 10.68s. The test set contains 20 tests, 11
of which are satisfiable with an average execution time of
13.07s.

3.2 Specialising for Ensemble Computation
Ensemble Computation is the study of an NP-complete

variant of the Boolean circuit problem where one must find
the smallest circuit that satisfies a set of Boolean functions
simultaneously [23]. This problem can be translated into
a satisfiability problem, which MiniSAT can then seek to
solve.

The Ensemble training set contains 25 tests, 12 of which
are satisfiable, spread evenly over 5 bins. The mean execu-

tion time for bins 1 and 2 is 4.21s, the mean execution time
for bins 3 and 4 is 9.89s. The average execution time for Bin
5 is 28.87s. The test set contains 14 tests contain, 4 of which
are satisfiable with an average execution time of 14.23s.

3.3 Specialising for AProVE
AProVE, Automated Program Verification Environment3

[16, 17, 18], is a system for the generation of automated
termination proofs of term rewrite systems. AProVE uses a
Boolean satisfiability solver to determine which paths can or
cannot be reached. Proving termination is a much discussed
area in computer science [6, 12, 15, 31] with SAT solvers
frequently used to aid analysis [10, 13, 39]. In this example
the SAT solver is a component in a much larger applica-
tion. This distinguishes it from the two other applications
we optimise (where SAT solvers take a central role in prob-
lem solving). It serves as a reminder that GI need not be
applied to an entire application but individual components
within an application. Any component, when receiving the
correct training data, can be optimised. Improving the parts
that, in-turn, improve the whole.

The AProVE training set contains 24 tests, 13 of which are
satisfiable, spread evenly over 5 bins. The mean execution
time for bins 1 and 2 is 6.27s while the mean execution time
for bins 3 and 4 is 19.04. The average execution time for
Bin 5 is 25.33s. The test set contains 11 tests, 5 of which
are satisfiable, with an average execution time of 17.83s.

4. RESULTS AND DISCUSSION
In this section we report the results obtained from carry-

ing out the experiments described in Section 3. All three ex-
perimental runs, each optimising a di↵erent MiniSAT down-
stream application, completed successfully.

4.1 RQ1: Energy Reduction

Application Original(J) Champ(J) Reduction(%)
CIT 3111 2969 4.58
Ensemble 2232 1665 25.39
AProVE 3145 2973 5.44

Table 1: The original MiniSAT’s total Energy consumption
across all test-set tests compared to the Champion solutions’
energy consumption.

All three experiments produced champion solutions which
out-performed the original MiniSAT, in terms of energy ef-
ficiency, for their respective test sets. Table 1 shows the
improvements. The CIT and AProVE champions achieve
modest energy consumption reductions of approximately 5%
while the Ensemble champion achieves 25.39%. Further
analysis of the results has shown that these energy esti-
mations are statistically significant (p<= 0.01) using the
Wilcoxon signed rank test (we found CIT, AProVE, and
Ensemble to have the equal p-values of 3.716⇥ 10�12).

We carried out the Vargha-Delaney-A statistic on all three
experiments and found each to have a score of 1. This score
shows that the energy e�ciency of the champion solutions
are entirely superior to the original MiniSAT for their re-
spective application domains. Figure 3 shows box-plots that
visually demonstrate this significant e↵ect size.

3Available at http://aprove.informatik.rwth-aachen.de/

1330

(a) CIT (b) Ensemble (c) AProVE

Figure 3: Boxplots of the Champion solutions’ Energy Consumption compared to that of the original MiniSAT

When taking into account that MiniSAT is a relatively
small program and that it is already considered to be quite
e�cient (at least in terms of execution time), it is encourag-
ing that a reduction in energy consumption of 25% has been
achieved.

4.2 RQ2: Specialisation differences

- On CIT On Ensemble On AProVE
CIT - X X
Ensemble X - X
AProVE 3.56% 3.86% -

Table 2: The best solutions’ energy consumption when com-
puting other test-sets. An X indicates a timeout event when
running the test set.

When the champion solution for each application was run
against the test sets for the other two (see Table 2) we found
that both the CIT and Ensemble champions timeout when
attempting to run on the other two test sets (this timeout
is set at 5 minutes per test case, no test set used here ex-
ceeds 90 seconds when run on the original MiniSAT). This
indicates that these champions are “specialised” in such a
way that they cannot be generalised as optimisations for all
SAT problem sets. The AProVE champion functions cor-
rectly on the other test sets but does not achieve the same
performance improvement as seen when run in AProVE do-
main. It appears that this may be a general improvement
to MiniSAT unlike the other two solutions.

The AProVE champion solution, already shown to be a
general MiniSAT improvement, is found to be the removal of
an assert statement. Removing assert statements has pre-
viously been shown to produce good results for execution
time when optimising MiniSAT [37]. Our experiments show
that the same is true for optimising energy consumption. It
is also easy to understand why such a modification does not
result in specialisation as it will not produce a version of
MiniSAT that is functionally di↵erent to the original, un-
modified version.

The more interesting results come from the specialisation
cases (CIT and Ensemble). In the CIT solution we find a
mutation that results in a if statement being disabled (the

predicate replaced with a zero through a DELETE oper-
ation) in MiniSAT’s pickBranch function. The statement
is used for picking a random variable for assignment and is
called 2% of the time. The condition within the if statement
itself involves running a random number generator which
may be an unnecessary cost for such an under-used piece of
code. It is currently unknown why this modification results
in the solutions performing so poorly on the AProVE and
Ensemble test sets. It is perhaps the case that this rarely
entered if statement does result in significant impacts on
performance for Ensemble and AProVE, to the extent that
it is of benefit for them, but not for CIT.

For the Ensemble application, the application with the
largest reduction in energy, we found the specialisation made
a single modification to a switch statement. A modification
equivalent in outcome to changing MiniSAT’s polarity mode
from polarity_false to polarity_true. This causes the
solver to try an assignment of True instead of False to each
variable that has been picked for branching. It seems that
this polarity mode is of benefit in Ensemble Computation
, however, as previously stated, why these changes produce
measurable gains in performance is not fully understood.

One of the more unexpected, but nonetheless interesting,
observations is that the champion in each experiment has
always been a genotype containing only one modification.
We reject the idea that single modifications are truly opti-
mal. Not only does this run counter to optimal solutions
found in similar experiments [28, 37], the champion solution
found within the AProVE experiment is a general optimisa-
tion which could easily be crossed-over with the champions
found for CIT and Ensemble to produce better results for
each. Though mutation, and to a lesser extent crossover, al-
ways carries a high risk of producing poor solutions, it may
be the case that our policy of elitism and employing only a
50% mutation rate to reduce this risk, make it more di�-
cult to produce longer, fitter genotypes. Further research is
needed to investigate these possibilities. However we believe
that the results reported here are encouraging and thereby
justify further study.

4.3 RQ3: Energy-Time Relationship
Table 3 shows the reduction in execution time for each

specialisation. When compared to the energy reduction re-

1331

Experimental results (cont.)

• Can we optimize for one SAT application and use it in another?

• Most likely no (or at least not always)

(a) CIT (b) Ensemble (c) AProVE

Figure 3: Boxplots of the Champion solutions’ Energy Consumption compared to that of the original MiniSAT

When taking into account that MiniSAT is a relatively
small program and that it is already considered to be quite
e�cient (at least in terms of execution time), it is encourag-
ing that a reduction in energy consumption of 25% has been
achieved.

4.2 RQ2: Specialisation differences

- On CIT On Ensemble On AProVE
CIT - X X
Ensemble X - X
AProVE 3.56% 3.86% -

Table 2: The best solutions’ energy consumption when com-
puting other test-sets. An X indicates a timeout event when
running the test set.

When the champion solution for each application was run
against the test sets for the other two (see Table 2) we found
that both the CIT and Ensemble champions timeout when
attempting to run on the other two test sets (this timeout
is set at 5 minutes per test case, no test set used here ex-
ceeds 90 seconds when run on the original MiniSAT). This
indicates that these champions are “specialised” in such a
way that they cannot be generalised as optimisations for all
SAT problem sets. The AProVE champion functions cor-
rectly on the other test sets but does not achieve the same
performance improvement as seen when run in AProVE do-
main. It appears that this may be a general improvement
to MiniSAT unlike the other two solutions.

The AProVE champion solution, already shown to be a
general MiniSAT improvement, is found to be the removal of
an assert statement. Removing assert statements has pre-
viously been shown to produce good results for execution
time when optimising MiniSAT [37]. Our experiments show
that the same is true for optimising energy consumption. It
is also easy to understand why such a modification does not
result in specialisation as it will not produce a version of
MiniSAT that is functionally di↵erent to the original, un-
modified version.

The more interesting results come from the specialisation
cases (CIT and Ensemble). In the CIT solution we find a
mutation that results in a if statement being disabled (the

predicate replaced with a zero through a DELETE oper-
ation) in MiniSAT’s pickBranch function. The statement
is used for picking a random variable for assignment and is
called 2% of the time. The condition within the if statement
itself involves running a random number generator which
may be an unnecessary cost for such an under-used piece of
code. It is currently unknown why this modification results
in the solutions performing so poorly on the AProVE and
Ensemble test sets. It is perhaps the case that this rarely
entered if statement does result in significant impacts on
performance for Ensemble and AProVE, to the extent that
it is of benefit for them, but not for CIT.
For the Ensemble application, the application with the

largest reduction in energy, we found the specialisation made
a single modification to a switch statement. A modification
equivalent in outcome to changing MiniSAT’s polarity mode
from polarity_false to polarity_true. This causes the
solver to try an assignment of True instead of False to each
variable that has been picked for branching. It seems that
this polarity mode is of benefit in Ensemble Computation
, however, as previously stated, why these changes produce
measurable gains in performance is not fully understood.
One of the more unexpected, but nonetheless interesting,

observations is that the champion in each experiment has
always been a genotype containing only one modification.
We reject the idea that single modifications are truly opti-
mal. Not only does this run counter to optimal solutions
found in similar experiments [28, 37], the champion solution
found within the AProVE experiment is a general optimisa-
tion which could easily be crossed-over with the champions
found for CIT and Ensemble to produce better results for
each. Though mutation, and to a lesser extent crossover, al-
ways carries a high risk of producing poor solutions, it may
be the case that our policy of elitism and employing only a
50% mutation rate to reduce this risk, make it more di�-
cult to produce longer, fitter genotypes. Further research is
needed to investigate these possibilities. However we believe
that the results reported here are encouraging and thereby
justify further study.

4.3 RQ3: Energy-Time Relationship
Table 3 shows the reduction in execution time for each

specialisation. When compared to the energy reduction re-

1331

An X indicates a time out

Energy consumption vs. runtime

These findings show that for CPU-bound processes, such as MiniSAT, opCmizing execuCon Cme exclusively
produces more energy-efficient soluCons (and vice-versa).

Application Unmodified(s) Champion(s) Reduction
CIT 268 261 2.58%
Ensemble 219 162 25.89%
AProVE 280 261 6.69%

Table 3: The original MiniSAT’s execution time across all
test-set tests compared to the champion solutions’ execution
times.

sults in Table 1 it can be seen that the values appear to
correlate to the execution time.

To investigate the correlation further we sampled 20 func-
tionally correct solutions from each experiment, and ran
each solution against the entire test set with both energy
estimated and time measured for each test. Figure 4 shows
the data produced from this analysis with each test case’s
energy and time costs plotted. Visually the relationship be-
tween energy and time is stark, Table 4 gives the Pearson
Correlation Coe�cient for each experiment showing each to
have a very strong energy-time correlation.

Application N Correlation p

CIT 1160 0.988 < 2.2⇥ 10�16

Ensemble 457 0.995 < 2.2⇥ 10�16

AProVE 481 0.989 < 2.2⇥ 10�16

Table 4: The number of Data-Points, the Pearson Correla-
tion Coe�cient and p-value for the Energy-Time relation-
ship in each experiment.

These findings show that for CPU-bound processes, such
as MiniSAT, optimising execution time exclusively has the
side e↵ect of producing more energy-e�cient solutions (and
vice-versa). This provides further incentive to investigate us-
ing execution time as a metric for reducing energy consump-
tion for CPU-bound, single-threaded applications. If energy
consumption and execution time can be bundled into a sin-
gle metric, developers may find it easier to reduce energy as
methods to reduce program execution time are already well
understood.

Although this result is somewhat expected and unsurpris-
ing, the e↵ect has not been demonstrated empirically in the
context of SBSE. We are therefore pleased this work may aid
future research in providing evidence to their claims about
Energy-Time relationships in CPU-bound, single-threaded
applications.

5. THREATS TO VALIDITY
It is worthwhile mentioning there exists some threats to

validity for the results produced and the conclusions drawn
within this investigation. The first is the relatively small
area of code optimised (478 lines). Working on such a small
example is essentially reducing the search-space of the appli-
cation, making it easier to navigate and optimise for. Tech-
niques have been introduced for GI to optimise larger ap-
plications [28] but they have only been demonstrated for
execution time optimisation. It is currently unknown how
well these techniques would translate over to optimising for
Energy Consumption.

The Intel Power Gadget has been chosen as a power esti-
mation API for this investigation as it produced estimation
with low variance, is easy to implement, and is supplied by

a reputable hardware manufacturer though questions still
remain over how accurate this API is. The true relationship
between this estimation and the true energy consumption
is unknown. Intel provide no formal documentation on this
API, nor has there been any research into its validity mean-
ing this research has been undertaken on the assumption
the Intel Power Gadget functions within an acceptable de-
gree of accuracy. Furthermore, the gadget is limited to CPU
activity exclusively, therefore results presented here ignore
any potential energy increases occurring elsewhere and lim-
its the findings of this paper to CPU-bound applications.

6. FUTURE WORK
Our results show that optimisation is possible though there

are still questions that must be answered to allow GI for
energy optimisation to move from academia to real-world
developers.
The first and foremost of these questions is how energy

can be measured to capture usage outside of the CPU. This
is of particular importance for mobile applications which
are more likely to use components understood to consume
relatively large quantities of energy such as GPS or WiFi
[35]. Though there has been work in this area [19, 30, 35,
46] it is unknown how e↵ectively these can be integrated
into a the GI framework and therefore further research is
required.
We highlighted in Section 5 that using GI to improve en-

ergy e�ciency has yet to be applied to larger applications.
Thus we believe future investigations should focus on opti-
mising larger applications for energy consumption in order
to better understand how the techniques presented can be
scaled.
We also believe more work into Genetic Improvement is

required. The genotypes produced in our experiments are
smaller than we believe to be truly optimal. New techniques
require development and testing to ensure the best results
are delivered to the user.

7. CONCLUSION
We evolved MiniSAT, a popular Boolean satisfiability solver,

to reduce its energy consumption on three applications. We
found that energy e�ciency can be improved by as much
as 25%, though this varies greatly depending on the down-
stream application being optimised. We also discovered GI
is able to find solutions to reduce energy consumption that
would be di�cult for human developers to find.
Two of the three champion solutions were found to be

specialised to their respective downstream applications in a
manner that they were no longer applicable to other MiniSAT
downstream applications. This finding adds to the argu-
ments presented in previous research that GI can be used to
specialise solutions for specific environments [27, 37].
Our further investigations into the results produced in our

experiments found that the energy savings corresponded to
decreases in execution time most likely due to the CPU-
bound nature of the application optimised. The very strong
correlations found provides evidence that for applications
with similar characteristics to MiniSAT (that is CPU bound,
singled threaded, and with limited I/O activity) execution
time and energy consumption may be considered interchange-
able metrics.

1332

(a) CIT (b) AProVE (c) Ensemble

Figure 4: Scatterplot of the Energy-Time relationship within the three experiments

8. REFERENCES

[1] M. Banbara, H. Matsunaka, N. Tamura, and K. Inoue.
Generating combinatorial test cases by e�cient SAT
encodings suitable for CDCL SAT solvers. In Logic for
Programming, Artificial Intelligence, and Reasoning,
pages 112–126. Springer, 2010.

[2] A. Banerjee, L. K. Chong, S. Chattopadhyay, and
A. Roychoudhury. Detecting energy bugs and hotspots
in mobile apps. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations
of Software Engineering - FSE 2014, pages 588–598,
New York, New York, USA, Nov. 2014. ACM Press.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo. The oracle problem in software testing: A
survey. IEEE Transactions on Software Engineering,
2015.

[4] A. Biere, M. Heule, and H. van Maaren. Handbook of
satisfiability, volume 185. IOS press, 2009.

[5] Boston Consulting Group. GeSI SMARTer2020: The
role of ICT in driving a sustainable future.
http://gesi.org/SMARTer2020, 2012. [Online; accessed
10-January-2015].

[6] A. R. Bradley, Z. Manna, and H. B. Sipma.
Termination analysis of integer linear loops. In
CONCUR 2005–Concurrency Theory, pages 488–502.
Springer, 2005.

[7] D. J. Brown and C. Reams. Toward energy-e�cient
computing. Communications of the ACM, 53(3):50–58,
2010.

[8] C. Bunse, H. Höpfner, S. Roychoudhury, and
E. Mansour. Choosing the” best” sorting algorithm for
optimal energy consumption. ICSOFT, 2009.

[9] P. Chen and K. Keutzer. Towards true crosstalk noise
analysis. In Proceedings of the 1999 IEEE/ACM
international conference on Computer-aided design,
pages 132–138. IEEE Press, 1999.

[10] M. Codish, I. Gonopolskiy, A. M. Ben-Amram,
C. Fuhs, and J. Giesl. SAT-based termination analysis
using monotonicity constraints over the integers.
Theory and Practice of Logic Programming,
11(4-5):503–520, 2011.

[11] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna,
and C. Le. RAPL: Memory power estimation and
capping. In Low-Power Electronics and Design
(ISLPED), 2010 ACM/IEEE International
Symposium on, pages 189–194, 2010.

[12] N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and
A. Serebrenik. A general framework for automatic
termination analysis of logic programs. Applicable
Algebra in Engineering, Communication and
Computing, 12(1-2):117–156, 2001.

[13] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp,
R. Thiemann, and H. Zankl. SAT solving for
termination analysis with polynomial interpretations.
Springer, 2007.

[14] M. Gabel and Z. Su. A study of the uniqueness of
source code. In Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of
software engineering - FSE ’10, pages 147–156, New
York, New York, USA, Nov. 2010. ACM Press.

[15] J. Giesl. Termination analysis for functional programs
using term orderings. In Static Analysis, pages
154–171. Springer, 1995.

[16] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn,
C. Fuhs, C. Otto, M. Plücker, P. Schneider-Kamp,
T. Ströder, S. Swiderski, et al. Proving termination of
programs automatically with AProVE. In IJCAR,
volume 14, 2014.

[17] J. Giesl, P. Schneider-Kamp, and R. Thiemann.
AProVE 1.2: Automatic termination proofs in the
dependency pair framework. In Automated Reasoning,
pages 281–286. Springer, 2006.

[18] J. Giesl, R. Thiemann, P. Schneider-Kamp, and
S. Falke. Automated termination proofs with
AProVE. In Rewriting Techniques and Applications,
pages 210–220. Springer, 2004.

[19] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating mobile application energy consumption
using program analysis. In 2013 35th International
Conference on Software Engineering (ICSE), pages
92–101. IEEE, May 2013.

[20] M. Harman, W. B. Langdon, Y. Jia, D. R. White,
A. Arcuri, and J. A. Clark. The GISMOE challenge:

1333

Summary & Conclusions

Other results from our survey

0 5 10 15 20 25 30 35 40

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

(A1) The program execution (and therefore the
program itself) has an impact on energy

consumption.

0 5 10 15 20 25 30

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

(A2) The used programming language does not
have an influence on the overall energy

consumption.

0 5 10 15 20 25 30 35 40 45

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

(A3) The tools used for programming (compilers,
testing tools, etc.) impact the energy required for

software engineering.

0 5 10 15 20 25 30

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

(A4) There is no evidence that a program impacts
energy consumption.

0 5 10 15 20 25 30 35

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

(A5) The used program libraries impact the
energy consumption of the resulting program.

0 5 10 15 20 25 30 35

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

(A6) The software process used does not impact
the energy consumption of software

development.

Other results from our survey

0 5 10 15 20 25 30 35

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

(C1) Sustainable software engineering is an
essential research and teaching topic.

0 5 10 15 20 25 30 35

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

(C2) Sustainable software engineering should be
part of any computer science study program.

0 5 10 15 20 25 30

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

(C3) Sustainable software engineering should be
taught in a separate course.

0 5 10 15 20 25 30 35 40

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

(C4) Sustainable software engineering is of
increasing importance.

0 5 10 15 20 25 30 35

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

(C5) Sustainable software engineering is a niche
topic not so relevant for any study program.

Summary

• Discussed and defined the term “Sustainable Software
Engineering” / ”Green Software”

• Discussed the influencing factors of sustainability of Green in
Software

• Introduced a method for converting programs into ones that
require fewer energy resources (Genetic Improvement / Genetic
algorithms, Search-based Software Engineering)

• Presented the outcome of a study carried out in a lecture at TU
Graz.

Other conclusions
• The term “sustainable software engineering” is not commonly agreed

on.
• Finding better (= less resource requiring) programs is valuable,

leading to green software
• Less runtime seems to lead to less energy consumption

• AI approaches like GA can be used to adapt programs for resource
efficiency

• Other ideas include using Expert Systems / Decision Support Systems to
come up with programs requiring fewer resources…

• We may use LLMs or other deep-learning models for this purpose
• …

For further information on current
research in this area …
• International Workshop on Green and Sustainable Software (GREENS) as part of ICSE

• 2012-2018, 2023-2025
• 1-day workshop
• See https://greensworkshop.github.io
• Objectives:

Engineering green software-intensive systems is critical in our
drive towards a sustainable, smarter planet. The goal of green
software engineering is to apply green principles to the design
and operation of software-intensive systems. Green and self-
greening software systems have tremendous potential to
decrease energy consumption. Moreover, software can and
should be rethought to address sustainability issues, for
instance, innovative business models, new processes, and
incentives. Monitoring and measuring the greenness of
software is critical to the notion of sustainable software.

