Sustainablility in
Software Engineering

Franz Wotawa
TU Graz, Institute of Software Engineering and Atrtificial Intelligence

wotawa@tugraz.at

Motivation

* The energy consumption of computers depends on the
hardware AND the running software

« Example: Function isElement (a)
« Checking the content of variable a to be an element of a collection

(list,...)

isElement (a) {

for i=1 to length(A) do:

if (a==A[1])
end for;
return false; }

then return true;

isElement (a) {
if (a==Alhash(a)]) then
return true;
else
return false; }

O(n) n=length(A)

O(1)

isElement (a) {

end for;
return false;

for i=1 to length(A) do:
if (a==A[1])

then return true;

compilation

A:

.zero 4000

isElement(int):

push rbp

mov rbp, rsp

mov DWORD PTR [rbp-20], edi
mov DWORD PTR [rbp-4], ©
jmp .L2

.L5:

mov eax, DWORD PTR [rbp-4]
cdge

mov eax, DWORD PTR A[@+rax*4]
cmp DWORD PTR [rbp-20], eax
jne .L3

mov eax, 1

jmp .L4

ret

isElement (a) {
if (a==Alhash (a)
return true;

]) then

else
return falsq

compilation

COMPARE RESOURCES REQUIRED
AFTER BEING EXECUTED!

A:

.zero 4000
hash(int):
push rbp

isElement(int):

push rbp

mov rbp, rsp

sub rsp, 8

mov DWORD PTR [rbp-4], edi
mov eax, DWORD PTR [rbp-4]
mov edi, eax

call hash(int)

cdge

mov eax, DWORD PTR A[@+rax*4]
cmp DWORD PTR [rbp-4], eax

al
1
0
.L5:
leave

ret

Motivation

* Runtime and energy consumption depend on the number of
statements to be processed:

* The proper data structure for the right job matters
 Need to reduce the overall number of statements to be executed

* Need to measure energy consumption (have an example later)
 But, is this all?

What is the knowledge students have
about sustainable SE?

 Carried out a survey (lecture on Software Technology at TU
Graz during the summer term 2025), asking 60 students about
their knowledge and beliefs regarding sustainability in software
engineering.

(D1) What is your gender? (D2) What is your age?

What is the knowledge students have
about sustainable SE?

(B3) Have you already taken courses (B4) Have you already worked as a
dealing with sustainable software programmer considering sustainable
engineering in the past? software engineering principles?

M Yes B Yes

mNo mNo

What is the knowledge students have
about sustainable SE?

(B1) Do you know countermeasures (B2) Do you know countermeasures
for reducing the overall energy for reducing the energy consumption
consumption of development? of programs?

M Yes M Yes

®mNo ®mNo

Objectives

* Answer the following questions:
* Why does sustainability matter for programs (and software
engineering)
 What is sustainable software engineering?
« How can we support sustainability in the case of software engineering?

* The focus is on software engineering, not the use of software to
improve sustainability

Sustainability and software

* Important to note

« Software is becoming increasingly important

« E.g., see Goldman Sachs, Software Is Taking Over the Auto Industry, Nov. 2022
(https://www.goldmansachs.com/intelligence/pages/software-is-taking-over-the-auto-industry.html)

* ICT accounts for about 2-4% of all global GHG emissions, and software is the backbone
* When developing software that has a low energy footprint, we are able to save GHG
emissions!
 United Nations (UN)’s Brundtland report defines sustainable development as
the ability to “meet the needs of the present without compromising the ability of
future generations to satisfy their own needs”. According to the UN, sustainable
development needs to satisfy the requirements of three dimensions, which are

society, the economy, and the environment.

Sustainable Software Engineering

* Microsoft;

“Sustainable Software Engineering is an emerging discipline at the intersection of climate
science, software, hardware, electricity markets, and data center design. The Principles of
Sustainable Software Engineering are a core set of competencies needed to define, build,
and run sustainable software applications.”

» Alexander Belokrylov (The Power Of Sustainable Software, Forbes, Aug 18, 2022):

,Sustainable software engineering (or sustainable software development) is becoming
more popular nowadays. This approach aims to design software that will increase overall
application efficiency and reduce energy and space consumption requirements.”

Some definitions

From: Naumann, S., Dick, M., Kern, E. et al.. The GREENSOFT model: a reference model for green and sustainable software and
its engineering. SUSCOM 1(4), 294-304 (2011). doi:10. 1016/j.suscom.2011.06.004

« Sustainable Software is software whose development, deployment, and usage results in minimal direct
and indirect negative impacts or even positive impacts on the economy, society, human beings, and the

environment.

» A prerequisite for sustainable software is a sustainable development process, which refers to
considering environmental and other impacts during the software life cycle and the pursuit of the goals of

sustainable development.

 Building on this, we can define Sustainable Software Engineering as the art of developing sustainable
software through a sustainable software engineering process.

Note that sustainable software engineering can be seen as an emerging discipline at the intersection of
climate science, software, hardware, electricity markets, and data center design

Dimensions of software sustainability

From: C. Calero, M. Piattini: Sustainable Computing:
Informatics and Systems 16 (2017) 117-124. Human
https://doi.org/10.1016/j.suscom.2017.10.011 lstaREsay

« Human sustainability: how software development and
maintenance affect the sociological and psychological ¢
aspects of the software development community and its %
individuals. This encompasses topics such as: Labor rights, ”
psychological health, social support, social equity and TmTm—
livability. T s

« Economic sustainability: how the software lifecycle -.-a.ﬁ ﬁ 'f*
processes protect stakeholders’ investments, ensure > 3

‘ Energetic resources

benefits, reduce risks, and maintain assets.

« Environmental sustainability: how software product 1'\.\ "\‘ w { [/
development, maintenance and use affect energy \ /
consumption and the usage of other resources. \\ | SOFTWARE | //ﬂ"
Environmental sustainability is directly related to a software Neets | LIFECYCLE | weet:
product characteristic that we call “software green ability.” FRECESSES

Software sustainability

« The main goal of Green in Software
Engineering is to include green
practices in both software
development and the other activities
that are part of Software
Engineering.

» |ISO/IEC/IEEE defines software
engineering as “the application of a
systematic, disciplined, quantifiable
approach to the development,
operation, and maintenance of
software; that is, the application of
engineering to software”

Software Sustainability

Green Software

Economic
Software
sustainability

Green
BY

Software

Human
Software
Sustainability

Summary of the discussion so far

* In a closer sense, software sustainability captures "Green (in)
Software” and focuses on the development and maintenance of
software that contributes to the reduction of GHG emissions!

* Reduction during development: e.g., reduce compilations, and
minimize relearning in case of machine learning-based software

applications
* Reduction during use: Develop programs that have a minimized
GHG footprint!

« Might be more important because of multiple program executions (1
development but n executions)

Research impact / Mapping studies
and reviews

From: Brunna C. Mourao, Leila Karita, Ivan do 14
Carmo Machado, Green and Sustainable 12
Software Engineering - a Systematic Mapping 10
Study, SBQS, October 17-19, 2018, Curitiba,
Brazil,
https://doi.org/10.1145/3275245.3275258

15
13 13

5 1

=T LS R - N = I - -]
=y

2003 2009 2010 2011 2012 2013 2014 2005 2016 2017

From: Birgit Penzenstadler, Veronika Bauer, 40 29

Coral Calero, Xavier Franch, Sustainability in 30 51

Software Engineering: A Systematic Literature 20 12 1 11

Review, in Proceedings of the International 10 —_— 3
Conference on Evaluation and Assessment in 0

Software Engineering (EASE), Jan 2012, 20062007 2008 2009 2010 2011 2012

Review, DOI: 10.1049/ic.2012.0004 —Papers

The GREENSOFT Model

From: Stefan Naumann, Eva Kern, Markus Dick and Timo Johann, Sustainable Software
Engineering: Process and Quality Models, Life Cycle, and Social Aspects, in L.M. Hilty and
B. Aebischer (eds.), ICT Innovations for Sustainability, Advances in Intelligent Systems and
Computing 310, DOI 10.1007/978-3-319-09228-7 11

A sustainable software product ideally meets three conditions:
* The software is produced in a way that meets sustainability objectives.

* The software has minimal negative social and environmental impacts
during its usage (first-order effects).

* The software functionality reinforces sustainable development or at
least has no negative impacts on society or the environment (second-
order and systemic effects).

The GREENSOFT Model (cont.)

GREENSOFT Model

Green and Sustainable Software Model

Life Cycle of Software Products

)Dewelmpment}) Usage » EndoflLife)

First-order Effects

Second-order Effects

Third-order Effects

Sustainability Criteria and Metrics

Directly Related

Indirectly Related

Common Quality

Criteria and Metrics

Procedure Models

)AdminiStrate)}

Lse)

) Purchase)

Recommendations and Tools

For Developers

For Purchasers

For Administrators

For Users

To e fodénd possibla undar b, th padson whe assocased CO0 wilth This woark has waved all

@m exprrigh and relabed of resighboring righls o this work

A quality model for sustainable

software

(

Indirectly related

Directly related

Criteria Criteria

 To decide whether
or not software is

Fit for Purpose

)

Travel

Carbon Footprint

sustainable,
appropriate criteria
are required

Reduction Energy

consumption
Feasibili
asibility Wacta
Product
Sustainability Infrastructure
Reflectivity Quality Mud.el Social Accessibility
Green and Sustainable Aspects Usability

Software

C

QOrganization

 Quality aspects:

Efficiency,

CPU-Intensity

Common : i
crtera Sustainability
Runtime
efficienc
: Portability Hardware

Obsolescence

Efficiency J

Reusabillity,

Memory Usage

-
h
A

Adaptability

Peripheral

Intensity Energy Efficiency

Modifiability, and

Idl
dleness Framework Entropy

Usability (extended
to sustainability)

Mumbers of

Methods Functional Types

To the extent possible under law, the person who associated CCO with this work has waived
all copyright and related or neighboring rights to this work. Copyright of Visio shapes by Microsoft
(cloud symbol used in this work). You may distribute drawings that contain the shapes. However, you
may not sell or distribute original or modified Visio shapes.

PUBLIC
DOMAIN

Process Models of Sustainable Software Engineering
(1) Process-Centric Software Sustainability

« Sustainability Management Process. The management process includes a preliminary phase, a planning
phase, a monitoring phase, and a supplier sustainability control. In the preliminary phase, the principles and
criteria for sustainability are established. In the planning phase, sustainability activities of the development
process are indicated, and the corresponding requirements and necessary resources are planned. Afterward,
the sustainability of the deployed activities and their conformity with the requirements are monitored. The last
part of the management process (supplier sustainability control) deals with sustainability policies and supply and
service requirements. Here, an agreement must be reached, and the supplier’s sustainability needs to be
monitored.

« Sustainability Engineering Process. The engineering process concerns suitable tools and methods to enable
and support a sustainable development process. In this context, sustainable issues and green principles for
development are defined, applied, and analyzed. Energy and resource consumption are factors that impact
sustainability and, thus, should be identified at the start of the engineering process. In the next step, the impacts
of these effects should be analyzed in order to set sustainability objectives for the development process
subsequently. In addition to the impacts of the process itself, the impacts of change requests on sustainability
should be determined.

« Sustainability Qualification Process. The qualification process applies to external resources such as
engineering and management support tools. Aimed at sustainable products, these external resources need to
be sustainable as well. In order to ensure their quality, a qualification strategy, an implementation plan for the
strategy, documentation of the outcomes of the qualification, and a qualification report are required.

Process Models of Sustainable Software Engineering
(2) Agile and Sustainable Software Engineering

* Not a whole process but an extension

« Two main activities:
* Process Assessment (Focus on the sustainability of the software development

process)

» Process Assessment is a continuous activity alongside the software development process. It is meant
to collect and edit data from the process that can be used for a carbon footprint calculation or even for

a life cycle assessment

« Sustainability Reviews and Previews (Focus on the sustainability of the software
product)

* Reviews and Preview meetings are conducted regularly

* Three roles: the Customer Representative, the Development Team, and
the Sustainability Executive

However, can we do better?

* Focus on the automation of producing sustainable software!

Genetic
improvement (Gl)

Genetic programming/algorithms applied
to sustainable SE

Motivation

» The largest hurdle in producing energy-efficient software is the developer’s disconnect between the
source code they write and the energy that will be consumed from the compiled product they deliver.

« Without a deep understanding of how a particular compiler works, along with an equally deep
understanding of how much energy a given instruction will consume, the problem remains difficult for
many developers.

* It has been found that metrics previously believed to guide developers to more energy efficient solutions
could be better at doing so.

« Subtle changes, such as introducing inline methods, swapping APl implementations, and constructing
semantically equivalent (but structurally inequivalent) algorithms, have all been shown to influence
energy consumption.

« However, this influence is difficult to determine outside of the ad hoc and inefficient process of trial
and error.

» Tools have to be developed to guide users to energy-inefficient areas of their software.
« Hence, a method of decreasing software’s energy consumption lies in automated processes.

Using genetic improvement in
sustainable software engineering

* Objective: Optimize the energ
consumption of programs but stlll

keep the required functionality y
rogram Pass

» ; ° /P » Fail X
* Idee: Change the program until the +

energy consumption is lowest / Energy

consumption

: : . @ Apply
* Potential solution: Use genetic changes , .
. «a P’ behaves like
algorithms/programs for Program P’ | & L
optimization (ako Search-Based lower energy

Software Engineering) consumption

Genetic programming

* Population where each element has a

chromosome
* Apply operators like

Genetic Search: Using
genetic principles to guide

» Selection based on A ms, 33,2, 2ma5) SN

a fitness function f‘ Questions:
_ : ;Z * What are genes?
 Crossover : What are the operations?
« Mutation /--.*) /§
Start ?

(x=0, y=35, z=0.2)

to generate new populations

* Represent problem as

Genetic programming
chromosomes comprising

4) mutate o 4
/—P
genes. A set of

\m M chromo§omes is called a
a T~ ‘ population
\ J ﬂ

| e Chromosomes can be
select .

_ J stated as strings (or any
opulation; f .
POP population;,, other collection

crossover

c1 oooooo\
/111000
c2 1/1(1]1]1]1

mutation

C3 1 0(1/0|1 |1 1 0(1|1]1 |1

Genetic algorithm (GA)

» Crossover:
« Selection of 2 arbitrary chromosomes
« Take genes from both to generate a new chromosome

« Mutation:
« Select 1 arbitrary chromosome
« Change 1 or more genes for generating a new chromosome

e Selection of chromosomes:
» Make use of a fithess function

Fithess function

* Maps chromosomes to a particular fithess value

()

0/ 00 0|O0]|O 0.923

Genetic algorithm

In every step we may have
a population of same size.
Use fitness function to
select n chromosomes.

nNo

l

Initialize Population
(Generate population randomly)

We stop when reaching a
criterion, e.g., one
chromosome reached a
certain fitness level.

Stop
criterion
eached?

yes

We may generate a lot of
mutations and other

Select Population using fitness
function

Perform crossover

offsprings using mutation
operators and crossover.

Perform mutation

How to use Genetic Algorithms /
Programming for reducing energy

consumption?

Reducing Energy Consumption Using Genetic
Improvement

Bobby R. Bruce
University College London
ondon
United Kingdom
r.bruce@cs.ucl.ac.uk

ABSTRACT

Genetic Improvement (GI) is an area of Search Based Soft-
ware Engineering which seeks to improve software’s non-
functional properties by treating program code as if it were
genetic material which is then evolved to produce more op-
timal solutions. Hitherto, the majority of focus has been
on optimising program’s exccution time which, though im-
portant, is only one of many non-functional targets. The
growth in mobile computing, cloud computing infrastruc-
ture, and ecological con re forcing developers to fo-
cus on the energy their software consumes. We report on
investigations into using GI to automatically find more en-
ergy efficient versions of the MiniSAT Boolean satisfiability
solver when specialising for three downstream applications.
Our results find that GI can successfully be used to reduce
energy consumption by up to 25%

Categories and Subject Descriptors

D.2 [Software]: Software Engineering

Keywords

Search based software engineering, SBSE, genetic impro;
ment, GI, optimisation, energy optimisation, energy
ciency, energy consumption, Boolean satisfiability

1. INTRODUCTION

Less than a decade ago the quality of software (outside of
end-user design preferences) could broadly be described as
the extent to which software met its specification while min-
imising the prevalence of bugs and usage of traditional com-
puter resources such as CPU time and memory allocation.
The growth in two new technologies, mobile computing de-
vices and cloud services, has led to a new environment for
software engineers where they must now consider the en-
ergy an application consumes; the quality of software is
now measured in Joules, as well as bug counts, seconds,
and megabytes. At present there are more smartphones in

Permission to make digital or hard copies of al or part of this work for personal or
classroom use is granted without e provided that copies are not made or disributed
for profit or cial advantage and that copies bear this notice and the full cita-
tion on the firs page. Copyrights for componenis of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, o post an servers or t redistribute to liss, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org

GECCO 15, July 11 - 16, 2015, Madrid, Spain

@© 2015 ACM. ISBN 978-1-4503-3472-3/15/07..515.00

DO hittp://dx.doi.org/10.1145/2739480.2754752

Justyna Petke
University College London
London London
United Kingdom
j.petke@ucl.ac.uk

Mark Harman
University College London

United Kingdom
mark.harman@ucl.ac.uk

the world than personal computers [22], each containing a
limited store of energy between charges that must be used
efficiently. The energy required to run large server clusters
has grown considerably in the last decade, estimated to be
between 1.1% to 1.5% of global electricity consumption in
2010 [26], putting strain on energy suppliers and the budgets
of those responsible for purchasing this energy [7]. The total
ICT infrastructure generated 1.9% of global CO2 emi:
in 2011 [5] ‘ger than the entire United Kingdom estimated
for the 2010-2014 period [42]) indicating that com-
puter science has a role to play in mitigating climate change

Thus we believe it important that software engineers find
ways of programming computers with energy efficiency in
mind to appease the demands from consumers for longer
battery lif
and from society’s desire to minimise humanity’s impact on
the environment

One of the largest hurdles in producing energy-efficient
software is the developer’s disconnect between the source
code they write and the energy that will be consumed from
the compiled product they deliver [33]. Without a deep un-
derstanding of how a particular compiler works, along with
an equally deep understanding of how much energy a given
instruction will consume, the problem remains difficult for
many developers. It has been found that metrics previously
believed to guide developers to more energy efficient solu-
tions are, in reality, poor at doing so [38]. Subtle changes,
such as introducing inline methods [41], swapping API im-
plementations [33], and constructing semantically equivalent
(but structurally inequivalent) algorithms [8] ha
shown to influence energy consumption. However this influ-
ence is difficult to determine outside of the ad hoc and inef-
ficient process of trial-and-error. Tools have been developed
to guide users to energy-inefficient areas of their software [2,
11, 30, 19] though the developer retains responsibility for
fying these inefficiencies.

We suggest that the most under explored method of de-
creasing software’s energy consumption lies in automated
proces Such processes would allow developers to focus
solely on meeting the specification requirements with wor
ries about non-functional attributes like energy consumption
left to an algorithm capable of refactoring software to a more
optimal state.

Genetic Tmprovement (GI) [20, 25, 27, 28, 4
44] is a Search Based Software Engineering (SBSE) tech

ions

from companies to reduce their energy bills,

been

nique [21] which treats program code as if it were genetic
-

material that can then be evolved to produce optimised
lutions. GI has previously been found effective at optimi

* Program and its Genotype Representation:
« Source code conversion
» Select lines that might be changed
* A gene represent sequences of selected lines
* Introduce source code change operations (for
mutation
 DELETE (delete a line of code)
« REPLACE (replace one line with another)

« COPY (copy a line to another location

« Assumption: All required information is already in the
available source code! Consider similar statements only.

« Example: a while loop (e.g., x>5) can be replaced with the
condition of another while loop (e.g., y==

Genetic improvement (cont.)

 Fitness Function: Energy consumption

The fitness of a candidate solution is determined by measuring the total energy consumed (see Section 2.4) across all
tests selected from the training set (see Section 2.3) when using the original unmodified software divided by the energy
consumed by the phenotype across the selected tests. Thus, a fitness greater than 1 indicates a solution that consumes
less energy, while a fitness less than 1 indicates a solution that consumes more energy.

» Selection:

Each selected test case can either be passed or failed. A test is deemed to have passed when the modified version
categorizes a test as satisfiable or unsatisfiable, with that categorization equal to the categorization produced by the
original MiniSAT. We use the original code as an oracle to guide the Gl to functionally correct solutions. When a test is
found to have failed, the energy consumption or that test case is not included in the fitness evaluation, and instead, an
appropriate penalty is applied. To be selected for the next generation, a solution must have a fitness of above 0.95, have
passed an appropriate number of the selected test cases, and be in the top 50% of the population.

Genetic improvement (cont.)

 Crossover:

Crossover is carried out by selecting one parent based on fitness and another chosen randomly from the
selected individuals. Due to the simplicity of the genotype representation, crossover consists of appending
one genotype to another, producing a new individual. Crossover is carried out until the population size, after

selection, has doubled.

 Mutation:

After crossover, mutations are applied to the selected genotypes. Prior investigations have shown Gl
frameworks such as this can lead to bloat, resulting in effective solutions being encumbered with ineffective
mutations. For this reason, elitism has been implemented so that the top 5 solutions in each generation
move forward to the next without mutation. The remaining selected individuals have a 50% chance of
having a mutation applied. Mutations consist of adding a random DELETE, REPLACE, or COPY
modification to the genotype. If the population after crossover has not met the preset population size, then
single, random mutations are added as entirely new genotypes until the population size is met.

Genetic improvement (cont.)

 Carrying out the experiments
* Program to be optimized: MiniSAT (MiniSAT2-070721)
« MiniSAT applications: CIT, Ensemble, AProVE
 Test cases during the search are selected depending on the application

 Estimation of the energy consumption:

* Intel Power Gadget API for Mac OS X2, which estimates the energy
consumption of 2nd Generation and higher Intel Core processors

* Intel Power Gadget uses drivers and libraries to read the processor’s special
energy model-specific registers (MSRs) over a specified time period. These
register readings are then used to calculate the total energy consumed.

Experimental results

* Energy consumption reduction using Gl

Application Original(J) Champ(J) Reduction(%)

CIT 3111 2969 4.58
Ensemble 2232 1665 25.39
AProVE 3145 2973 5.44

[==]
C x - =
—_— o
r - o
o | o
8, m/—— 2
b5 2 p |
S .
— - ™ —_—
[=
L B 2 2 -
3 ® ” —
= = 2 s
> = 2 > 0
Do o3 - (=
g S @
5] M w =
wi wi =S
: i =1
J o
% - =]
& ' g S &
— | ™~
o
Original MiniSAT Champion Original MiniSAT Champion Original MiniSAT Champion

(a) CIT (b) Ensemble (c) AProVE

Experimental results (cont.)

« Can we optimize for one SAT application and use it in another?

- On CIT On Ensemble On AProVE
CIT - X X
Ensemble X X

AProVE 3.56% 3.86% / -

An X indicates a time out

* Most likely no (or at least not always)

Energy consumption vs. runtime

Application Unmodified(s) Champion(s) Reduction

CIT 268 261 2.58%
Ensemble 219 162 25.89%
AProVE 280 261 6.69%
g g g pr
[=1 8
. e » ~ 8 v
% 8 % g “‘? & lf - &
- 3 o s P
5 58 Lo 38 ‘
g8 o 2s . i
Pe V. o0 o
g 23 8 oo ® g1
RV v s
lI] 10 ZICI 3I0 40 0 10 20 30 40 5I0 60 10 20 30 40
Time (Seconds) Time (Seconds) Time (Seconds)
(a) CIT (b) AProVE (c) Ensemble

These findings show that for CPU-bound processes, such as MiniSAT, optimizing execution time exclusively
produces more energy-efficient solutions (and vice-versa).

Summary & Conclusions

Other results from our survey

(A1) The program execution (and therefore the
program itself) has an impact on energy
consumption.
Strongly disagree
Disagree
Neither agree nor disagree

Agree

Strongly agree

o
wv

10 15 20 25 30 35 40

(A2) The used programming language does not
have an influence on the overall energy
consumption.
Strongly disagree
Disagree
Neither agree nor disagree

Agree

Strongly agree

o
[8;]

10 15 20 25 30

(A3) The tools used for programming (compilers,

testing tools, etc.) impact the energy required for
software engineering.

Strongly disagree

Disagree

Neither agree nor disagree

Agree

Strongly agree

10 15 20 25 30 35 40

o
(82}

(A4) There is no evidence that a program impacts
energy consumption.

Strongly disagree

Disagree

Neither agree nor disagree
Agree

Strongly agree

10 15 20 25

o
w

45

30

(A5) The used program libraries impact the
energy consumption of the resulting program.

Strongly disagree
Disagree [
Neither agree nor disagree | NI
Agree I
|

Strongly agree

o
v
=
o
=
v
N
o
N
v
w
o

(A6) The software process used does not impact
the energy consumption of software
development.

Strongly disagree

Disagree

Neither agree nor disagree

Agree

Strongly agree

o
(%)

10 15 20 25 30

35

35

Other results from our survey

(C1) Sustainable software engineering is an
essential research and teaching topic.

Strongly disagree
Disagree
Neither agree nor disagree

Agree

Strongly agree

10 15 20 25 30

o
wv

(C4) Sustainable software engineering is of
increasing importance.

Strongly disagree
Disagree
Neither agree nor disagree

Agree

Strongly agree

10 15 20 25 30 35

o
wv

(C2) Sustainable software engineering should be
part of any computer science study program.

Strongly disagree
Disagree

Neither agree nor disagree [l

Agree I
strongly agree | NN
35 0 5 10 15 20 25 30
(C5) Sustainable software engineering is a niche
topic not so relevant for any study program.
strongly disagree | N
Disagree [N
Neither agree nor disagree | N NI
Agree
Strongly agree [
40 0 5 10 15 20 25 30

(C3) Sustainable software engineering should be
taught in a separate course.

Strongly disagree
Disagree

Neither agree nor disagree

Strongly agree

35

35

||
I
|
Agree [N
I
0 5 10 15 20 25

30

Summary

* Discussed and defined the term “Sustainable Software
Engineering” / "Green Software”

* Discussed the influencing factors of sustainability of Green in
Software

* Introduced a method for converting programs into ones that
require fewer energy resources (Genetic Improvement / Genetic
algorithms, Search-based Software Engineering)

* Presented the outcome of a study carried out in a lecture at TU
Graz.

Other conclusions

* The term “sustainable software engineering” is not commonly agreed
on.

* Finding better (= less resource requiring) programs is valuable,
leading to green software

« Less runtime seems to lead to less energy consumption

Al approaches like GA can be used to adapt programs for resource
efficiency

« Other ideas include using Expert Systems / Decision Support Systems to
come up with programs requiring fewer resources...

« We may use LLMs or other deep-learning models for this purpose

For further information on current
research in this area. ...

* International Workshop on Green and Sustainable Software (GREENS) as part of ICSE
-« 2012-2018, 2023-2025

e

» See https://greensworkshop.github.io

- Objectives: 9th International Workshop on
Green and Sustainable Software
Engineering green software-intensive systems is critical in our (GREENS’25)
drive towards a sustainable, smarter planet. The goal of green Official website of the International Workshop on Green and Sustainable

. Software (GREENS)
software engineering is to apply green principles to the design

. . . £ (@]
and operation of software-intensive systems. Green and self- he ‘ 2 =
H H Co-Located with: Date: Location: Submission:
greening software systems have tremendous potential to s Aoril25,2035 Ottaws Conada) Novembr 11, 2024
decrease energy consumption. Moreover, software can and
should be rethought to address sustainability issues, for Theme & Goals
instance innovative business models new processes and Engineering green software-intensive systems is critical in our drive towards a sustainable, smarter
7 7 /7

planet. The goal of green software engineering is to apply green principles to the design and

incentives. Monitoring and measuring the greenness of

software is critical to the notion of sustainable software.

