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Why combine?

Currently, symbolic reasoning is great in narrow Al
e The user specifies the problem

o Very clever users apply KRR so that

e a computer solves it.
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No miracles, but general problem solving should surpass humans.
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What buys symbols and symbolic Al?

e Correctness

e “Completeness”, difficult to achieve for practical problems
e Reasoning from first principles

e Solving new problems

e Explainability
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Great challenges, even in simple engineering tasks

— = QH-ALPHA (100) CLINGO (14)

(a) Solver configurations, with numbers of solved instances
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Great challenges, even in simple engineering tasks

== QH-ALPHA (100) CLINGO (14)

(a) Solver configurations, with numbers of solved instances

+1 7 |1t is about controlling the search!
A case for
Jmachine learning/subsymbolic Al
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ML/subsymbolic Al offers a solution

AlphaGo beats the world's best Go player

Problem is the size of the search space
01:2715
— " Gosignificantly larger search space than
004518 Chess (Deep Blue)
| ® Some industrial applications (chip

manufacturing) have significantly larger
search space than Go

" Tic-tac-Toe: 9!

© CC BY-SA 2.0

" Chess: approx. 10 2°(80 moves)

Combination of
® Go: approx. 10 36°(150 moves)

* Deep Learning £00.000
(controlling the search process) " Chip manufacturing: > 2 2~

e Monte Carlo tree search
(search method)
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The power of reasoning from first principles and
qualitative reasoning
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The power of reasoning from first principles and
qualitative reasoning
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“ Reasoning from first principles, model-based reasoning, causality

“ E.g., automated diagnosis, repair, configuration

“ Implemented by logic as representation language and logical reasoning

“ Complete and correct
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We have a modelling/specification problem

Engineers cannot specify sufficiently
detailed physical model for

e Diagnosis and repair

e Predicting energy consumption

e Predicting wear of tools

We apply ML/subsymbolic approaches to learn the
detailed physics/parameters.

(c) Voestalpine

Broad Al for diagnosing, designing, and optimizing complex technical system.
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Cluster of Excellence: Bilateral Al
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Vision of a broad Al

Narrow Als for specific tasks

In contrast, we envision a

Broad Al

by combining and advancing the strengths of
sub-symbolic and symbolic Al
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