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Historical & current
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in Al
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Direction of travel in modern Al

1. Major breakthroughs in machine learning

[2. Major scale-up in knowledge representation }

3. Complementary strengths & weaknesses



2. Major scale-up in
knowledge representation

 Knowledge graphs as networks of
relations between things

* Enables logical reasoning




2. Major scale-up in
knowledge representation

Efficient querying and reasoning
» Scales to 1019 relations between 10 things

In use at
major industries
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Direction of travel in modern Al

1. Major breakthroughs in machine learning
2. Major scale-up in knowledge representation
3. Complementary strengths & weaknesses

Construction cost Human effort Data hunger

Scalable Worse with more  Worse with less
data data

Explainable + -

Generalisable Performance cliff  Out of sample



Strengths & Weaknesses

Symbolic Statistical

Construction Human effort Data hunger

Scaleable Worse with more  Worse with less

Explainable + -

Generalisable Performance cliff OOD data

 Knowledge acquisition bottleneck
vs. data acquisition bottleneck
 Combinatorial explosion
vs. sampling inefficiency
* Explainability
vs. black box
* Brittleness
vs. out-of-distribution data
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Neuro-symbolic Al:
a glimpse from the
factory floor




Working hypothesis of neuro-symbolic Al

* Knowledge-driven & data-driven systems
each have their strengths and weaknesses

e These are complementary

* We need combinations of both



This is not a new idea

“20 years”
[Artur d’Avila Garcez
& Luis Lamb]

“30 years”
[Pascal Hitzler]
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Context aware Machine Learning

P(cushion |chair) >> P(flower | chair)

“Given the context of chair,
a cushion is much more likely
than a flower”

cushion(y) V arm Rest(y)]

“Parts of a chair are:
cushion and armrest”

See survey of 100+ systems in Von Rueden et al, Learning, 2019



Learning that is robust to change
(through intermediate abstractions)
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Learning that is robust to change
(through intermediate abstractions)
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Learning that is robust to change
(through intermediate abstractions)
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out-of-distribution data

class: 793
label: n04209133 shower cap
certainty: 99.7%
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Robust for out-of-distribution data

(by using background knowledge)
Predict Select
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‘ 3 Crown
é

showercap?

104

200



Construct justifications
Predict Justify
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So the neuro-symbolic paradigm
enables Al systems that are

Explainable

Guaranteed safe

Aware of context

Robust against data drift

Robust against out-of-distribution data
Effective on a weak signal from small data



The LLM in the room...
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The LLM in the room would say:

2. LLMs don’t need any symbols
(they have purely neural representations)

3. Therefore we can happily stay
in the neural paradigm



LLMs are language models...

... they are not world models

Representational hypothesis in cognitive science:

“cognitive processes are mediated by
internal representations of information.
The mind operates by creating, storing, and manipulating
mental representations of the external world
to guide perception, reasoning,
decision-making, and action.”



Neuro-symbolic synthesis:

Al systems will need world models,
and these world models will be

Partially subsymbolic/neural/distributed
(& reasoning = network activations)

Partially symbolic/propositional/discrete
(& reasoning = symbol manipulations)

But:
reasoning about the world # reproducing linguistic patterns
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