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Historical & current
directions of travel

in AI



4

History?

Symbolic
Knowledge
Logic
Reasoning

Connectionist
Data
Statistics
Learning



Symbolic
Knowledge
Logic
Reasoning

Neural
Data
Statistics
Learning

The AI pendulum!
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Direction of travel in modern AI

1. Major breakthroughs in machine learning
2. Major scale-up in knowledge representation
3.  Complementary strengths & weaknesses
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2. Major scale-up in 
    knowledge representation
• Knowledge graphs as networks of 

relations between things
• Enables logical reasoning
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2. Major scale-up in 
    knowledge representation
• Efficient querying and reasoning
• Scales to 1010 relations between 109 things
• In use at 

major industries
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Direction of travel in modern AI

1. Major breakthroughs in machine learning
2. Major scale-up in knowledge representation
3.  Complementary strengths & weaknesses
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Strengths & Weaknesses
Symbolic Statistical

Construction Human effort Data hunger
Scaleable Worse with more Worse with less
Explainable + -
Generalisable Performance cliff OOD data
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• Knowledge acquisition bottleneck 
 vs. data acquisition bottleneck

• Combinatorial explosion 
 vs. sampling inefficiency

• Explainability 
 vs. black box

• Brittleness 
 vs. out-of-distribution data



Neuro-symbolic AI:
a glimpse from the 

factory floor



Working hypothesis of neuro-symbolic AI

• Knowledge-driven & data-driven systems
each have their strengths and weaknesses

• These are complementary
• We need combinations of both



This is not a new idea
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“20 years” 
[Artur d’Avila Garcez

& Luıs Lamb]

“30 years” 
[Pascal Hitzler]





Context aware Machine Learning

See survey of 100+ systems in Von Rueden et al, Learning, 2019

flower?
cushion?

“Parts of a chair are: 
    cushion and armrest”

“Given the context of chair,
a cushion is much more likely
than a flower”

P(cushion|chair) >> P(flower|chair)

Also
: se

mantic loss-
functio

n



Learning that is robust to change
(through intermediate abstractions) 

End-to-end: 
2x 784
inputs 19 outputs8

see(     )=3, see(     )=5, 3+5=8

see(     )=3, see(    )=5, 3+5=8



Learning that is robust to change
(through intermediate abstractions) 

Neural 
Back
end

Symbolic 
Front
end



Learning that is robust to change
(through intermediate abstractions) 



out-of-distribution data
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Robust for out-of-distribution data
(by using background knowledge)

queen
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Construct justifications

queen

wears
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shower
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Etc…
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The Vienna study
(group of Marta Sabout at WU)



So the neuro-symbolic paradigm 
enables AI systems that are

• Explainable
• Guaranteed safe
• Aware of context
• Robust against data drift
• Robust against out-of-distribution data
• Effective on a weak signal from small data
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The LLM in the room…



The LLM in the room would say:

1. LLMs are the new paradigm in AI
2. LLMs don’t need any symbols 

(they have purely neural representations)
3. Therefore we can happily stay 

in the neural paradigm
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LLMs are language models…

… they are not world models

Representational hypothesis in cognitive science:
“cognitive processes are mediated by 
  internal representations of information. 
 The mind operates by creating, storing, and manipulating
 mental representations of the external world 
 to guide perception, reasoning, 
 decision-making, and action.”
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Neuro-symbolic synthesis:
AI systems will need world models,
and these world models will be

Partially subsymbolic/neural/distributed
(& reasoning = network activations)

Partially symbolic/propositional/discrete
(& reasoning  = symbol manipulations)
But:
reasoning about the world ≠ reproducing linguistic patterns
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