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Man-at-the-End Attack Scenario
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Why software protections?

Protection of some secret in software!

Cryptographic 
key

System 
architecture

Superior 
algorithmCopy-

protection 
mechanism
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Encrypting assets in software?
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Trusted end-point Trusted end-point

encryption decryption

Storage

encryption



No trusted end-points and no data at rest!
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Software Protection

Code Obfuscation

Increasing the complexity of 
program code

Software Tamperproofing

Adding program logic that 
detects code modifications

Watermarking

Making a program 
(uniquely) identifiable

Analysis Modification Theft

Page 7Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra



Definitions

(Collberg et a. 1997)
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• More formal definition by Barak et al. [2001]

• An obfuscator O is a “compiler” which takes as input a program P and 
produces a new program O(P) such that for every P:

◦ Functionality: O(P) computes the same function as P

◦ Polynomial Slowdown: The description length and running time of O(P) 
are at most polynomially larger than that of P

◦ “Virtual black box” property: “Anything that can be efficiently computed 
from O(P) can be efficiently computed given oracle access to P“

Definitions
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Classification of obfuscating algorithms

Data obfuscation Static obfuscation Dynamic obfuscation
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• Make data look different

• Goal: An attacker is unable to locate data based on its known structure

• Example: AES key

◦ 128/192/256 bit, high entropy

◦ Splitting the key into multiple fragments makes pattern matching based 
identification more difficult

Data obfuscation
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Static code rewriting

Opaque 
predicates

Aliasing

Inserting 
dead or 

irrelevant code

Control flow 
obfuscation

Replacing 
instructions

Parallelized 
code

Reordering

Name 
scrambling

Loop trans- 
formations

Removing 
standard 

library calls

Function 
splitting/ 

recombination

Breaking 
relations
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Name scrambling

public long n6aWsw(float oTA8zU, float 9npG3M)

   4kZLih = oTA8zU * 9npG3M;

   return 4kZLih;

}

public long convert(float amountDollar, float rate)

   amountEuro = amountDollar * rate;

   return amountEuro;

}
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• Opaque expression: Expression whose value is known at obfuscation time, 
but difficult for an attacker to figure out

• Most common are opaque predicates (boolean valued expressions)

• Mixed Boolean-Arithmetic (MBA)

Opaque predicates

PT PF P?
true true truefalse false false
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Mixed Boolean-Arithmetic (MBA)
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x+y

4*(~x&y)-(x^y)-(x|y)
+4*~(x|y)-~(x^y)-~y-
(x|~y)+1+6*x+5*~z+
(~(x^z))-(x|z)-2*~x-
4*(~(x|z))-4*(x&~z)
+3*(~(x|~z))

Source: Liu, Binbin, et al. "MBA-Blast: Unveiling and Simplifying Mixed Boolean-Arithmetic Obfuscation." 30th USENIX Security Symposium. 2021.



Aliasing

function(&x, &x) 
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int function1(int* a, int* b) {

*a = 10;

*b = 5;

if ((*a - *b) == 0) function2();

}



Dynamic code rewriting

Packing/
Encryption

Hardware-
assisted 

obfuscation

Dynamic code 
modifications

Virtualization

Environmental 
requirements

Anti-debugging 
techniques
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• One of the most advanced techniques for binary obfuscation

• Converting the program’s functionality into byte code for a custom virtual 
machine interpreter that is bundled with the program

• The virtual machine interpreter and payload can be different for each 
instance of the program (polymorphism)

Virtualization
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Software Protection

Code Obfuscation

Increasing the complexity of 
program code

Software Tamperproofing

Adding program logic that 
detects code modifications

Watermarking

Making a program 
(uniquely) identifiable

Analysis Modification Theft
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Tampering with software

if (license_expired()) {

   printf(“expired!”);

   abort();

}
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if (false) {

   printf(“expired!”);

   abort();

}

Tampering with software

Page 21Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra



Tampering with software

if (dateToday > expirationDate) {

   printf(“expired!”);

   abort();

}
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Tampering with software

if (dateToday < expirationDate) {

   printf(“expired!”);

   abort();

}
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Branch, lower or equal
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Code checking

if (hash(P’s code) != 0xda6ba121)

   return false;
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• Can be broken easily with simple pattern matching attacks

◦ Identification of the hashing algorithm

◦ Identification of hard-coded hash value

Code checking

if (hash(P’s code) == 0xda6ba121)

   return false;
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• Hard-coded hash values are problematic

◦ Collusive attacks: if each copy of your program looks different (e.g., 
because it is fingerprinted) an attacker can look for differences in literal 
data to identify the hash values

• Countermeasures

◦ Adding a copy of the hashed region and then compare the hashes of the 
two regions

◦ Construction of the hash function so that unless the code has been 
modified, the function hashes to zero [Horne et al. 2001]

- Accomplished by using an invertible hash function and adding a semantically 
irrelevant data value (slot) that makes the region hash to zero

Protecting the hash value
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Code checker networks

code

checker51

checker71

checker45

checker1

checker2

checker33

.

..
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Last checkers remain 
unchecked
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• The response of a program to tampering attempts is crucial for its 
protection strength

• Famous example: Settlers III

◦ Copy protection „Sysiphus“

◦ A pirated copy of the game runs perfectly at first

◦ After a few hours, iron melters produce only pigs, no new settlers are 
born, newly planted trees don‘t grow, goods placed at a harbour for 
transport disappear

Software Tamperproofing
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• Spatial separation

◦ Static separation: making sure that detection and response are far away 
from each other in the binary

◦ Dynamic separation: making sure that the response function is not on 
the call stack when the detection takes place or that many functions are 
called between detection and response

• Temporal separation

◦ Wait a significant amount of time, before responding to tampering

◦ Do not wait for too long, otherwise the attacker can still cause damage 
until your program responds to the tampering

Response mechanisms
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Software Protection

Code Obfuscation

Increasing the complexity of 
program code

Software Tamperproofing

Adding program logic that 
detects code modifications

Watermarking

Making a program 
(uniquely) identifiable

Analysis Modification Theft
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• Idea: Replacing opcodes in a dummy function to encode the watermark

1. Add an unrelated dummy function D to the program

2. Modify D’s opcodes to embed the mark 

3. Add a bogus call  if (PF) D(), protected by an opaque predicate, to 
tie D to the cover program

Instruction mapping watermark

000 → iadd, 001 → isub, 010 → imul, 011 → idiv, 100 

→ irem, 101 → ior, 110 → iand, 111 → ixor 
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Protection evaluation



• In contrast to cryptography, it is very difficult to make a statement about the 
strength of an obfuscation

◦ Barak‘s impossibility result from 2002

- A general obfuscator for any program does not exist

- Practical applicability of indistinguishability obfuscation remains unclear

◦ Protection strength depends on a variety of parameters, including the 
motivation and creativity of a human analyst

• Collberg et al. proposed a taxonomy for obfuscations in 1997

◦ Potency, resilience, stealth, and costs

- There is no universally agreed and applicable method to define, qualify, or 
quantify the former three

Page 34

Protection evaluation
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• Potency measures how effectively a protection increases the difficulty, time, 
or resources required for an analysis or reduces the precision or usefulness of 
its results

• Potency is achieved by increasing the apparent complexity of the object to 
be analyzed or lowering its suitability as input for analysis, relative to specific 
analysis methods

• While traditionally focused on human manual analysis, we argue that 
potency also includes automated analyses, such as thwarting advanced 
malware detection and classification techniques
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Potency
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• A potent obfuscating transformation makes at least one analysis 
method harder to perform and no analysis easier

• Mila Dalla Preda presented a potency framework based on abstract 
domains

◦ Comparing the properties that are preserved by obfuscation 
transformations

◦ A transformation that preserves more properties is weaker than one 
than preserves less

◦ Often, domains of obfuscating transformations are not comparable 

◦ Example: (very simple) data obfuscation

Page 36

Potency
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Potency

Two simple data obfuscations Properties Sign and Parity

Both obfuscations 
preserve the Sign 

property

Only T1 preserves 
the Parity property

T1 preserves less, thus is more potent

T1(x) = 2 * x

T2(x) = 3 * x

-1 if x < 0

Sign(x):   0 if x = 0

1 if x > 0

Parity(x): 0 if even(x)

1 if odd(x)
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• Resilience measures how difficult it is to weaken or bypass a protection, 
specifically by adapting or developing new analyses or transformations to 
counteract its potency

• Counter-attacks may involve modifying existing analyses or designing new 
approaches that reduce the protection’s effectiveness with respect to 
specific analyses

• A protection is considered resilient if efforts to mitigate its potency (e.g., 
for malware detection) are challenging or only partially successful, even 
with advanced or alternative techniques

Page 38

Resilience
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• Stealth of protected code

◦ Can obfuscated code be distinguished from untransformed code?

• Local stealth

◦ An attacker cannot determine a particular instruction as being affected 
by an obfuscating transformation

• Steganographic stealth

◦ An attacker can not determine if a program has been transformed with a 
certain transformation or not
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Stealth
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• Computational overhead (runtime, memory consumption, etc.) of an 
obfuscating transformation

• Measuring costs is easy compared to potency and resilience

• However, meaningless without potency, resilience, and stealth 
measurements

• What are acceptable costs?

◦ Highly depends on the concrete use case

◦ Typically, software protections add a significant computational 
overhead to a program

Page 40

Costs
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• In-depth analysis of 571 publications on software 
protections

• For each paper, we collected 113 aspects

◦ Contribution area (obfuscation, deobfuscation, 
analysis, etc.)

◦ Types of performed measurements

◦ Used sample sets

◦ etc.

• 64.523 individual data points

• Published in ACM Computing Surveys

Literature survey
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Measured aspects
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• Focus on cost measurements, lack of strength measurements

◦ 25% of all analyzed papers do not report strength measurements

- 38% of the obfuscation goodware papers

◦ Not particularly surprising, as cost measurements (incl. interpretation) 
are rather straightforward

• Layering of protections is not well researched

• The more the merrier?

◦ Most software protections have a significant impact on code efficiency

◦ Goal: Implement protections that are sufficiently strong, avoiding 
unnecessary inefficiencies

Lack of knowledge on protection strength
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Efficient software protections

Page 44

Targeting specific 
protection scenarios*

*Objectives and capabilities 
of the attacker

Quantifying 
protection strength*

*Potency, resilience, 
and stealth
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• Generation of 22 software protection scenarios

• Evaluation of the effectiveness of different classes 
of obfuscation against code analysis and de-
obfuscation techniques in each of the 22 
scenarios

Software protection scenarios
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Pattern Matching
Automated Static 

Analysis
Automated 

Dynamic Analysis
Human-assisted 

Analysis

Finding the location 
of data

Finding the location 
of program 

functionality

Extraction of code 
fragments

Understanding the 
program
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• Kinder, J. Towards Static Analysis of Virtualization-Obfuscated Binaries. In 
Proceedings of the 19th Working Conf. Reverse Engineering (2012). IEEE, 
61– 70.

• Lifting static analysis to a second dimension of location (“virtual program 
counter”)

Example

Evaluation on a toy 
examples only

Same analysis precision 
as on unobfuscated code 

is achievable
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• Goal: Quantifying the strength of different obfuscations in a particular 
protection scenario to generate an efficient protection strategy

• Initial focus on potency and stealth

• Code complexity metrices

◦ Originally created to help building reliable, readable, and 
maintainable software constructs

- Attention: Less complex code is not necessarily more efficient

◦ Often utilized for measuring obfuscation potency, i.e., how well 
humans can comprehend the code

- e.g., Collberg et al. 1997

Protection strength quantification
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Halstead difficulty

main() {
  int a, b, sum;
  scanf("%d %d", &a, &b);
  sum = a+b;
  printf("sum: %d", sum);
}

main

()

{}

int

scanf

&

=

+

printf

,

; 

Distinct operators (η1): a

b

sum

"%d %d"

"sum: %d"

Distinct operands (η2):

η1=11 η2=5

N2=11

D = 11/2 * 11/5 = 12,1
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Halstead difficulty
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ABC metric
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McCabe’s cyclomatic complexity
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Myer’s interval
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• Obfuscations create characteristic patterns in a set of complexity measures

◦ Example: CFG flattening 

- Reduced cyclomatic complexity and Myer’s interval

- Increased Halstead difficulty

• Obfuscation layering

◦ Which obfuscations and combinations of obfuscations generate similar 
patterns?

- CFG flattening and virtualization

◦ Does the last obfuscation applied to a program have the biggest impact on 
the observed code complexity pattern?

Structural patterns in (protected) binary code
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• We measured the effects of obfuscation layering on the structure of binary 
code.

• We evaluated if individual obfuscations cover the structural patterns of others

◦ 85 C programs

◦ 80 different build configurations

◦ A total of 6211 samples

Obfuscation stealth model
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Resilience quantification

Data recovery

Function 

recovery

CFG recovery

G
ro

u
n

d
 

tru
th

Resilience 

measurements
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Targeted 

scripting
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• Software protections are heavily used in the industry

◦ Gaming, commercial software, malware

• They typically add significant overheads to a program (runtime 
performance, memory usage, etc.)

• Still, software protections are often applied with little assessment of their 
effectiveness

• Research towards more sustainable use of software protections

◦ Quantification of the protection strength

- Potency, resilience, and stealth

◦ Targeting concrete protection scenarios
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Conclusions



Thank you for your attention!
sebastian.schrittwieser@univie.ac.at
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