
Protecting Software Against Man-At-The-End Attacks
The Efficiency Challenge Dr. Sebastian Schrittwieser · Christian Doppler Laboratory AsTra

Man-at-the-End Attack Scenario

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 2

Man-at-the-End Attack Scenario

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 3

s

s

Why software protections?

Protection of some secret in software!

Cryptographic
key

System
architecture

Superior
algorithmCopy-

protection
mechanism

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 4

Encrypting assets in software?

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 5

Trusted end-point Trusted end-point

encryption decryption

Storage

encryption

No trusted end-points and no data at rest!

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 6

Software Protection

Code Obfuscation

Increasing the complexity of
program code

Software Tamperproofing

Adding program logic that
detects code modifications

Watermarking

Making a program
(uniquely) identifiable

Analysis Modification Theft

Page 7Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Definitions

(Collberg et a. 1997)

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 8

• More formal definition by Barak et al. [2001]

• An obfuscator O is a “compiler” which takes as input a program P and
produces a new program O(P) such that for every P:

◦ Functionality: O(P) computes the same function as P

◦ Polynomial Slowdown: The description length and running time of O(P)
are at most polynomially larger than that of P

◦ “Virtual black box” property: “Anything that can be efficiently computed
from O(P) can be efficiently computed given oracle access to P“

Definitions

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 9

Classification of obfuscating algorithms

Data obfuscation Static obfuscation Dynamic obfuscation

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 10

• Make data look different

• Goal: An attacker is unable to locate data based on its known structure

• Example: AES key

◦ 128/192/256 bit, high entropy

◦ Splitting the key into multiple fragments makes pattern matching based
identification more difficult

Data obfuscation

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 11

Static code rewriting

Opaque
predicates

Aliasing

Inserting
dead or

irrelevant code

Control flow
obfuscation

Replacing
instructions

Parallelized
code

Reordering

Name
scrambling

Loop trans-
formations

Removing
standard

library calls

Function
splitting/

recombination

Breaking
relations

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 12

Name scrambling

public long n6aWsw(float oTA8zU, float 9npG3M)

 4kZLih = oTA8zU * 9npG3M;

 return 4kZLih;

}

public long convert(float amountDollar, float rate)

 amountEuro = amountDollar * rate;

 return amountEuro;

}

Page 13Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Opaque expression: Expression whose value is known at obfuscation time,
but difficult for an attacker to figure out

• Most common are opaque predicates (boolean valued expressions)

• Mixed Boolean-Arithmetic (MBA)

Opaque predicates

PT PF P?
true true truefalse false false

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 14

Mixed Boolean-Arithmetic (MBA)

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 15

x+y

4*(~x&y)-(x^y)-(x|y)
+4*~(x|y)-~(x^y)-~y-
(x|~y)+1+6*x+5*~z+
(~(x^z))-(x|z)-2*~x-
4*(~(x|z))-4*(x&~z)
+3*(~(x|~z))

Source: Liu, Binbin, et al. "MBA-Blast: Unveiling and Simplifying Mixed Boolean-Arithmetic Obfuscation." 30th USENIX Security Symposium. 2021.

Aliasing

function(&x, &x)

Page 16Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

int function1(int* a, int* b) {

*a = 10;

*b = 5;

if ((*a - *b) == 0) function2();

}

Dynamic code rewriting

Packing/
Encryption

Hardware-
assisted

obfuscation

Dynamic code
modifications

Virtualization

Environmental
requirements

Anti-debugging
techniques

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 17

• One of the most advanced techniques for binary obfuscation

• Converting the program’s functionality into byte code for a custom virtual
machine interpreter that is bundled with the program

• The virtual machine interpreter and payload can be different for each
instance of the program (polymorphism)

Virtualization

Page 18Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Software Protection

Code Obfuscation

Increasing the complexity of
program code

Software Tamperproofing

Adding program logic that
detects code modifications

Watermarking

Making a program
(uniquely) identifiable

Analysis Modification Theft

Page 19Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Tampering with software

if (license_expired()) {

 printf(“expired!”);

 abort();

}

Page 20Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

if (false) {

 printf(“expired!”);

 abort();

}

Tampering with software

Page 21Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Tampering with software

if (dateToday > expirationDate) {

 printf(“expired!”);

 abort();

}

Page 22Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Tampering with software

if (dateToday < expirationDate) {

 printf(“expired!”);

 abort();

}

Page 23Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Page 24

Branch, lower or equal

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Code checking

if (hash(P’s code) != 0xda6ba121)

 return false;

Page 25Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Can be broken easily with simple pattern matching attacks

◦ Identification of the hashing algorithm

◦ Identification of hard-coded hash value

Code checking

if (hash(P’s code) == 0xda6ba121)

 return false;

Page 26Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Hard-coded hash values are problematic

◦ Collusive attacks: if each copy of your program looks different (e.g.,
because it is fingerprinted) an attacker can look for differences in literal
data to identify the hash values

• Countermeasures

◦ Adding a copy of the hashed region and then compare the hashes of the
two regions

◦ Construction of the hash function so that unless the code has been
modified, the function hashes to zero [Horne et al. 2001]

- Accomplished by using an invertible hash function and adding a semantically
irrelevant data value (slot) that makes the region hash to zero

Protecting the hash value

Page 27Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Code checker networks

code

checker51

checker71

checker45

checker1

checker2

checker33

.

..

Page 28

Last checkers remain
unchecked

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• The response of a program to tampering attempts is crucial for its
protection strength

• Famous example: Settlers III

◦ Copy protection „Sysiphus“

◦ A pirated copy of the game runs perfectly at first

◦ After a few hours, iron melters produce only pigs, no new settlers are
born, newly planted trees don‘t grow, goods placed at a harbour for
transport disappear

Software Tamperproofing

Page 29Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Spatial separation

◦ Static separation: making sure that detection and response are far away
from each other in the binary

◦ Dynamic separation: making sure that the response function is not on
the call stack when the detection takes place or that many functions are
called between detection and response

• Temporal separation

◦ Wait a significant amount of time, before responding to tampering

◦ Do not wait for too long, otherwise the attacker can still cause damage
until your program responds to the tampering

Response mechanisms

Page 30Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Software Protection

Code Obfuscation

Increasing the complexity of
program code

Software Tamperproofing

Adding program logic that
detects code modifications

Watermarking

Making a program
(uniquely) identifiable

Analysis Modification Theft

Page 31Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Idea: Replacing opcodes in a dummy function to encode the watermark

1. Add an unrelated dummy function D to the program

2. Modify D’s opcodes to embed the mark

3. Add a bogus call if (PF) D(), protected by an opaque predicate, to
tie D to the cover program

Instruction mapping watermark

000 → iadd, 001 → isub, 010 → imul, 011 → idiv, 100

→ irem, 101 → ior, 110 → iand, 111 → ixor

Page 32Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Protection evaluation

• In contrast to cryptography, it is very difficult to make a statement about the
strength of an obfuscation

◦ Barak‘s impossibility result from 2002

- A general obfuscator for any program does not exist

- Practical applicability of indistinguishability obfuscation remains unclear

◦ Protection strength depends on a variety of parameters, including the
motivation and creativity of a human analyst

• Collberg et al. proposed a taxonomy for obfuscations in 1997

◦ Potency, resilience, stealth, and costs

- There is no universally agreed and applicable method to define, qualify, or
quantify the former three

Page 34

Protection evaluation

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Potency measures how effectively a protection increases the difficulty, time,
or resources required for an analysis or reduces the precision or usefulness of
its results

• Potency is achieved by increasing the apparent complexity of the object to
be analyzed or lowering its suitability as input for analysis, relative to specific
analysis methods

• While traditionally focused on human manual analysis, we argue that
potency also includes automated analyses, such as thwarting advanced
malware detection and classification techniques

Page 35

Potency

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• A potent obfuscating transformation makes at least one analysis
method harder to perform and no analysis easier

• Mila Dalla Preda presented a potency framework based on abstract
domains

◦ Comparing the properties that are preserved by obfuscation
transformations

◦ A transformation that preserves more properties is weaker than one
than preserves less

◦ Often, domains of obfuscating transformations are not comparable

◦ Example: (very simple) data obfuscation

Page 36

Potency

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Page 37

Potency

Two simple data obfuscations Properties Sign and Parity

Both obfuscations
preserve the Sign

property

Only T1 preserves
the Parity property

T1 preserves less, thus is more potent

T1(x) = 2 * x

T2(x) = 3 * x

-1 if x < 0

Sign(x): 0 if x = 0

1 if x > 0

Parity(x): 0 if even(x)

1 if odd(x)

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Resilience measures how difficult it is to weaken or bypass a protection,
specifically by adapting or developing new analyses or transformations to
counteract its potency

• Counter-attacks may involve modifying existing analyses or designing new
approaches that reduce the protection’s effectiveness with respect to
specific analyses

• A protection is considered resilient if efforts to mitigate its potency (e.g.,
for malware detection) are challenging or only partially successful, even
with advanced or alternative techniques

Page 38

Resilience

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Stealth of protected code

◦ Can obfuscated code be distinguished from untransformed code?

• Local stealth

◦ An attacker cannot determine a particular instruction as being affected
by an obfuscating transformation

• Steganographic stealth

◦ An attacker can not determine if a program has been transformed with a
certain transformation or not

Page 39

Stealth

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Computational overhead (runtime, memory consumption, etc.) of an
obfuscating transformation

• Measuring costs is easy compared to potency and resilience

• However, meaningless without potency, resilience, and stealth
measurements

• What are acceptable costs?

◦ Highly depends on the concrete use case

◦ Typically, software protections add a significant computational
overhead to a program

Page 40

Costs

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• In-depth analysis of 571 publications on software
protections

• For each paper, we collected 113 aspects

◦ Contribution area (obfuscation, deobfuscation,
analysis, etc.)

◦ Types of performed measurements

◦ Used sample sets

◦ etc.

• 64.523 individual data points

• Published in ACM Computing Surveys

Literature survey

Page 41Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Measured aspects

Page 42Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Focus on cost measurements, lack of strength measurements

◦ 25% of all analyzed papers do not report strength measurements

- 38% of the obfuscation goodware papers

◦ Not particularly surprising, as cost measurements (incl. interpretation)
are rather straightforward

• Layering of protections is not well researched

• The more the merrier?

◦ Most software protections have a significant impact on code efficiency

◦ Goal: Implement protections that are sufficiently strong, avoiding
unnecessary inefficiencies

Lack of knowledge on protection strength

Page 43Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Efficient software protections

Page 44

Targeting specific
protection scenarios*

*Objectives and capabilities
of the attacker

Quantifying
protection strength*

*Potency, resilience,
and stealth

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Generation of 22 software protection scenarios

• Evaluation of the effectiveness of different classes
of obfuscation against code analysis and de-
obfuscation techniques in each of the 22
scenarios

Software protection scenarios

Page 45Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Pattern Matching
Automated Static

Analysis
Automated

Dynamic Analysis
Human-assisted

Analysis

Finding the location
of data

Finding the location
of program

functionality

Extraction of code
fragments

Understanding the
program

Page 46Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Page 47Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Kinder, J. Towards Static Analysis of Virtualization-Obfuscated Binaries. In
Proceedings of the 19th Working Conf. Reverse Engineering (2012). IEEE,
61– 70.

• Lifting static analysis to a second dimension of location (“virtual program
counter”)

Example

Evaluation on a toy
examples only

Same analysis precision
as on unobfuscated code

is achievable

Page 48Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Goal: Quantifying the strength of different obfuscations in a particular
protection scenario to generate an efficient protection strategy

• Initial focus on potency and stealth

• Code complexity metrices

◦ Originally created to help building reliable, readable, and
maintainable software constructs

- Attention: Less complex code is not necessarily more efficient

◦ Often utilized for measuring obfuscation potency, i.e., how well
humans can comprehend the code

- e.g., Collberg et al. 1997

Protection strength quantification

Page 49Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Halstead difficulty

main() {
 int a, b, sum;
 scanf("%d %d", &a, &b);
 sum = a+b;
 printf("sum: %d", sum);
}

main

()

{}

int

scanf

&

=

+

printf

,

;

Distinct operators (η1): a

b

sum

"%d %d"

"sum: %d"

Distinct operands (η2):

η1=11 η2=5

N2=11

D = 11/2 * 11/5 = 12,1

Page 50Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Halstead difficulty

Page 51Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

ABC metric

Page 52Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

McCabe’s cyclomatic complexity

Page 53Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Myer’s interval

Page 54Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Obfuscations create characteristic patterns in a set of complexity measures

◦ Example: CFG flattening

- Reduced cyclomatic complexity and Myer’s interval

- Increased Halstead difficulty

• Obfuscation layering

◦ Which obfuscations and combinations of obfuscations generate similar
patterns?

- CFG flattening and virtualization

◦ Does the last obfuscation applied to a program have the biggest impact on
the observed code complexity pattern?

Structural patterns in (protected) binary code

Page 55Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• We measured the effects of obfuscation layering on the structure of binary
code.

• We evaluated if individual obfuscations cover the structural patterns of others

◦ 85 C programs

◦ 80 different build configurations

◦ A total of 6211 samples

Obfuscation stealth model

Page 56Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Page 57Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

Resilience quantification

Data recovery

Function

recovery

CFG recovery

G
ro

u
n

d

tru
th

Resilience

measurements

Page 58

Targeted

scripting

Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra

• Software protections are heavily used in the industry

◦ Gaming, commercial software, malware

• They typically add significant overheads to a program (runtime
performance, memory usage, etc.)

• Still, software protections are often applied with little assessment of their
effectiveness

• Research towards more sustainable use of software protections

◦ Quantification of the protection strength

- Potency, resilience, and stealth

◦ Targeting concrete protection scenarios

21.10.24 Protecting Software Against Man-At-The-End Attacks - The Efficiency Challenge · Dr. Sebastian Schrittwieser · CD lab AsTra Page 63

Conclusions

Thank you for your attention!
sebastian.schrittwieser@univie.ac.at

	Slide 1: Protecting Software Against Man-At-The-End Attacks
	Slide 2: Man-at-the-End Attack Scenario
	Slide 3: Man-at-the-End Attack Scenario
	Slide 4: Why software protections?
	Slide 5: Encrypting assets in software?
	Slide 6: No trusted end-points and no data at rest!
	Slide 7: Software Protection
	Slide 8: Definitions
	Slide 9: Definitions
	Slide 10: Classification of obfuscating algorithms
	Slide 11: Data obfuscation
	Slide 12: Static code rewriting
	Slide 13: Name scrambling
	Slide 14: Opaque predicates
	Slide 15: Mixed Boolean-Arithmetic (MBA)
	Slide 16: Aliasing
	Slide 17: Dynamic code rewriting
	Slide 18: Virtualization
	Slide 19: Software Protection
	Slide 20: Tampering with software
	Slide 21: Tampering with software
	Slide 22: Tampering with software
	Slide 23: Tampering with software
	Slide 24
	Slide 25: Code checking
	Slide 26: Code checking
	Slide 27: Protecting the hash value
	Slide 28: Code checker networks
	Slide 29: Software Tamperproofing
	Slide 30: Response mechanisms
	Slide 31: Software Protection
	Slide 32: Instruction mapping watermark
	Slide 33: Protection evaluation
	Slide 34: Protection evaluation
	Slide 35: Potency
	Slide 36: Potency
	Slide 37: Potency
	Slide 38: Resilience
	Slide 39: Stealth
	Slide 40: Costs
	Slide 41: Literature survey
	Slide 42: Measured aspects
	Slide 43: Lack of knowledge on protection strength
	Slide 44: Efficient software protections
	Slide 45: Software protection scenarios
	Slide 46
	Slide 47
	Slide 48: Example
	Slide 49: Protection strength quantification
	Slide 50: Halstead difficulty
	Slide 51: Halstead difficulty
	Slide 52: ABC metric
	Slide 53: McCabe’s cyclomatic complexity
	Slide 54: Myer’s interval
	Slide 55: Structural patterns in (protected) binary code
	Slide 56: Obfuscation stealth model
	Slide 57
	Slide 58: Resilience quantification
	Slide 63: Conclusions
	Slide 64: Thank you for your attention!

