Sustainable Blockchains

Computer Scien

Krzysztof Pietrzak

(Centralized) Anonymous E-Cash, 80-90's

Bank

(Centralized) Anonymous E-Cash, 80-90's

Bank

(Centralized) Anonymous E-Cash, 80-90's

https://en.wikipedia.org/wiki/Cypherpunk

A **cypherpunk** is any activist advocating widespread use of strong cryptography and privacy-enhancing technologies as a route to social and political change.

Decentralization using 80s Crypto

Permissonless E-Cash / Nov. 2008

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone.

Bitcoin Consensus

Consensus in a permissionless setting is impossible

Bitcoin Consensus

Consensus in a permissionless setting is impossible

Bitcoin Consensus

Consensus in a permissionless setting is impossible

Bitcoin Consensus Nakamoto Consensus Assumption: Majority of computing power controlled by honest parties

Bitcoin Consensus Nakamoto Consensus Assumption: Majority of computing power controlled by honest parties

Proofs of Work [DworkNaor92] prove that it evaluated $\mathcal{H} \ 10^9$ times?

How can

How can

 $\mathcal{H}(100000000)$

Proofs of Work [DworkNaor92] for prove that it evaluated $\mathcal{H} \ 10^9$ times?

Proofs of Work [DworkNaor92] prove that it evaluated $\mathcal{H} \ 10^9$ times?

How can

Proofs of Work [DworkNaor92] prove that it evaluated $\mathcal{H} \ 10^9$ times?

How can

How can

for prove that it evaluated $\mathcal{H} \ 10^9$ times?

Proofs of Work [DworkNaor92]

 $\mathcal{H}(c, \cdot)$

 10^9 required in expectation to find a proof π

Consensus and Application Layer

Sustainability of Blockchains Ecological footprint from PoW mining

Sustainability of Blockchains Ecological footprint from PoW mining

Scalability

Blockchains **for** sustainability

Scalability

Transactions per second

https://howmuch.net/sources/crypto-transaction-speeds-compared

Increase block size and/or rate

Increase block size and/or rate

Space-efficient blockchains

Georg Fuchsbauer Jan 27, 2025

Increase block size and/or rate

Space-efficient blockchains

Georg Fuchsbauer Jan 27, 2025

Layer 2 Solution: Rollups

crypto magic ZK-SNARKs^a

^aZero-Knowledge Succinct Non-Interactive Argument of Knowledge

Layer 2 solution: Payment Networks

Payment network, e.g. Lightning

Layer 1: Blockchain, e.g. Bitcoin

Ecological Footprint of PoW Mining

Bitcoin Mining

Nakamoto's vision: spare CPU cycles used for mining

Bitcoin Mining

Nakamoto's vision: spare CPU cycles used for mining

Bitcoin Mining

Bitcoin Sustainability https://digiconomist.net/bitcoin-energy-consumption

Single Bitcoin Transaction Footprints

^{21.} Soyan Amoa BitusinEnerg/Consumption.com

Alternatives to Proof of Work Mining?

Proofs of (Useful) Work (Bitcoin,old Ethereum, Primecoin...) mining resource: work

Alternatives to Proof of Work Mining?

Proofs of (Useful) Work (Bitcoin,old Ethereum, Primecoin...) mining resource: work

Proofs of Stake (Ethereum, Algorand, Ourboros,...) mining resource: (staked) coins

Alternatives to Proof of Work Mining?

Proofs of (Useful) Work (Bitcoin,old Ethereum, Primecoin...) mining resource: work

September 2022, "the Merge" reduced Ethereum's energy consumption by \approx 99.95%.

Proofs of Stake (Ethereum, Algorand, Ourboros,...) mining resource: (staked) coins

Proofs of Stake vs. Proofs of Work

- Is a PoStake based Blockchain still permissionless?
- How secure can a PoStake based Blockchain be?
- . . .

Adversary cheaply aquries \$

Adversary cheaply aquries

Adversary bootstraps chain using \$

Source: Hilbert, M., & López, P. (2011). The World's Technological Capacity to Store, Communicate, and Compute Information. Science, 332(6025), 60 –65. http://www.martinhilbert.net/WorldInfoCapacity.html

and 280 exabytes

Resource is

External

External

Internal

Resource is Power consumption

External

Huge

External

Tiny

Internal

Tiny

Founded 2017 (CEO Bram Cohen) Mainchain launched 2021

Green money for a digital world

The Guardian, May 26, 2021 New cryptocurrency Chia blamed for hard drive shortages

Speculators buy up vital components as demand surges for rival to bitcoin that requires huge storage space

Driving the circular economy for storage

The Circular Drive Initiative (CDI) is a partnership of global leaders in digital storage, data centers, sustainability, and blockchain collaborating to reduce e-waste by enabling, driving, and promoting the secure reuse of storage hardware.

Home Members FAQ News 🛅 Linkedin Resources Q

https://xch.farm/decentralization/

https://xch.farm/decentralization/

Nakamoto Coefficient

1	Chia (XCH) PoST	11	TRUSTPOOL	PROFIT	Pool↓↑ Fee	Network 19.03 EiB	Capacity ↓ 11.54 EiB	Blocks	Last ↓↑ Found
1.	nossd.com		NoSSD ³	GPU & CPU PLOTTERS	3.5 % PPLNS		5.38 EiB	319 +36.2	6259747 3 min
2.	spacefarmers.io 👓				0 % PPLNS		2.80 EiB	150	6259733 7 min
3.	h9.com + 💽 🚫	Ð			1% PPLNS	much	1.10 EiB	52	6259745 3 min
4.	h9.com + 💽 📭	Ð			1 % PPLNS		764.96 PiB	43 +2.8	6259683 22 min
5.	xchpool.org				1% PPLNS		547.65 PiB	23	6259729 9 min

https://miningpoolstats.stream/chia

https://xch.farm/decentralization/

Nakamoto Coefficient

Chia Blog

Approaching the Next Generation of Proof of Space

August 8, 2024

by Chia Team

www.chia.net/2024/08/08/approaching-the-next-generation-of-proof-of-space/

Blockchains for Sustainability

Blockchains for Sustainability

How Blockchains Help Sustainability:

6

- Traceable Supply Chains: Verify ethical sourcing and reduce waste.
- Carbon Tracking: Monitor and verify emissions reductions.
- Incentives for Green Practices: Reward eco-friendly behavior via tokens.
- Decentralized Energy: Enable peer-to-peer renewable energy trading.
- Circular Economy: Streamline recycling and reuse.
- Smart Contracts: Ensure compliance with environmental standards.
- Carbon Credit Trading: Transparent, secure marketplace for carbon offsets.
- Sustainability Transparency: Reduce greenwashing with verifiable data.
- Impact Tracking: Verify sustainable investments and outcomes.
- Waste Management: Optimize recycling and reduce landfill waste.

Blockchains for Sustainability

Climate Warehouse: Helping Countries Leverage Climate Markets and Carbon Pricing

https://youtu.be/7k9U60scEK4

ľ	•	١
L	Ň	l

73735	45963	78134	63873
02965	58303	90708	20025
98859	23851	27965	62394
33666	62570	64775	78428
81666	26440	20422	05720
15838	47174	76866	14330
89793	34378	08730	56522
78155	22466	81978	57323
16381	66207	11698	99314
75002	80827	53867	37797
99982	27601	62686	44711
84543	87442	50033	14021
77757	54043	46176	42391
80871	32792	87989	72248
30500	28220	12444	71840

73735	45963	78134	63873
02965	58303	90708	20025
98859	23851	27965	62394
33666	62570	64775	78428
81666	26440	20422	05720
15838	47174	76866	14330
89793	34378	08730	56522
78155	22466	81978	57323
16381	66207	11698	99314
75002	80827	53867	37797
99982	27601	62686	44711
84543	87442	50033	14021
77757	54043	46176	42391
80871	32792	87989	72248
30500	28220	12444	71840

73735	45963	78134	63873
02965	58303	90708	20025
98859	23851	27965	62394
33666	62570	64775	78428
81666	26440	20422	05720
15838	47174	76866	14330
89793	34378	08730	56522
78155	22466	81978	57323
16381	66207	11698	99314
75002	80827	53867	37797
99982	27601	62686	44711
84543	87442	50033	14021
77757	54043	46176	42391
80871	32792	87989	72248
30500	28220	12444	71840

6			
	5	708	63873 20025 62394
33666 81666		64775	78428 05720
89793 78155 16381	47174 34378 22466 66207 80827	08730 81978 11698	14330 56522 57323 99314 37797
	87442 54043 32792	50033 46176 87989	44711 14021 42391 72248 71840

73735	45963	78134	63873
02965	58303	90708	20025
98859	23851	27965	62394
33666	62570	64775	78428
81666	26440	20422	05720

TOO MUCH COMMUNICATION

99982	27601	62686	44711
84543	87442	50033	14021
77757	54043	46176	42391
80871	32792	87989	72248
30500	28220	12444	71840

Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, Krzysztof Pietrzak: Proofs of Space. CRYPTO 2015

https://www.pebbling-game.at/

 $\ell_4 := hash(\ell_2, \ell_3)$

The Main Problem with Efficient Proof Systems

N Proofs of Work N times as costly as one

The Main Problem with Efficient Proof Systems

 $N \ {\rm Proofs} \ {\rm of} \ {\rm Work} \ N \ {\rm times} \ {\rm as} \ {\rm costly} \ {\rm as} \ {\rm one}$

N Proofs of Space/Stake/... as cheap as 1

The 3 Issues with Efficient Proofs

1) Bootstrapping (Long range forks, seeing the future)

2) Digging (grinding block)

3) Double dipping (extending many blocks)

Verifiable Delay Function

A VDF is a function that requires a large amount of time to compute

The difficulty input controls how long the VDF takes to solve

A proof is used to quickly verify the output came from a given input

Simple Verifibale Delay Function [ITCS'19]

VDF ALLIANCE

SUPRA NATIONAL

We are Supranational.

A product and service company developing hardware accelerated cryptography for verifiable and confidential computing.

The VDF Alliance is a collection of academic, non-profit, and corporate collaborators building open source hardware for the blockchain ecosystem

HELP US BUILD

