TU

Grazm

Sustainability in Software
Engineering

Franz Wotawa
TU Graz, Institute for Software Technology
wotawa@ist.tugraz.at

Objectives

* Answer the following questions:
« Why does sustainability matters for programs (and software
engineering)
 What is sustainable software engineering?
« How can we support sustainability in the case of software engineering?

Sustainability and software

* Important to note

« Software is becoming increasingly important

* E.g., see Goldman Sachs, Software Is Taking Over the Auto Industry, Nov. 2022
(https://www.goldmansachs.com/intelligence/pages/software-is-taking-over-the-auto-
industry.html)

 |ICT accounts for about 2-4% of all global GHG emissions, and software is the
backbone

 When developing software that has a low energy footprint, we are able to save GHG
emissions!

« United Nations (UN)’s Brundtland report defines sustainable
development as the ability to “meet the needs of the Prese_nt without
compromising the ability of future generations to satisty their own needs”.
According to the UN, sustainable development needs to satisfy the
requlrementts of three dimensions, which are society, the economy, and the
environment.

Sustainable Software Engineering

* Microsoft:

“Sustainable Software Engineering is an emerging discipline at the
intersection of climate science, soitware, hardware, electricity markets,
and data center design. The Principles of Sustainable Software
Engineering are a core set of competencies needed to define, build, and
run sustainable software applications.”

. ,10\EI3ex2aOn2d2e)(Belokrylov (The Power Of Sustainable Software, Forbes, Aug

Loustainable software engineering (or sustainable software development)
IS becoming more popular nowadays. This approach aims to design
software that will increase overall application efficiency and reduce energy
and space consumption requirements.”

Some definitions

From: Naumann, S., Dick, M., Kern, E. et al.. The GREENSOFT model: a reference model for green and
sustainable software and its engineering. SUSCOM 1(4), 294-304 (2011). doi:10. 1016/j.suscom.2011.06.004

« Sustainable Software is software whose development, deployment, and usage results in
minimal direct and indirect negative impacts or even positive impacts on the economy,
society, human beings, and the environment.

» A prerequisite for sustainable software is a sustainable development process, which
refers to considering environmental and other impacts during the software life cycle and
the pursuit of the goals of sustainable development.

 Building on this, we can define Sustainable Software Engineering as the art of
developing sustainable software through a sustainable software engineering process.

Note that sustainable software engineering can be seen as an emerging discipline at
the intersection of climate science, software, hardware, electricity markets, and data
center design

Dimensions of software sustainability

From: C. Calero, M. Piattini: Sustainable Computing:
Informatics and Systems 16 (2017) 117-124. Human
https://doi.org/10.1016/j.suscom.2017.10.011 ustaiastity

* Human sustainability: how software
development and maintenance affect the
sociological and psychological aspects of the
software development community and its
individuals. This encompasses topics such as:

Labor rights, psycholo%lcal health, social support,
social equity and livabillity. r(

- Economic sustainability: how the software oids (<
lifecycle processes protect stakeholders’ T A
investments, ensure benefits, reduce risks, and
maintain assets.

* Environmental sustainability: how software
product development, maintenance and use affect

wo Spgd\)-‘\

Human resources Energetic resources Economic resources

energy consumption and the usage of other T E
resources. Environmental sustainability is directly = LIFECYCLE e
related to a software product characteristic that we PROCESSES

call “software green ability.”

Software sustainability

» The main goal of Green in
Software Engineering is to
Include green practices in
both software development
and the other activities that
are part of Software
Engineering.

 ISO/IEC/IEEE defines
software engineering as “the
application of a systematic,
disciplined, quantifiable
approach to the development,
oPeratlon, and maintenance
of software; that is, the
application of engineering to
sottware”

Software Sustainability

Green Software

Economic
Software
sustainability

Green
BY

Software

Human
Software
Sustainability

Summary of the discussion so far

* In a closer sense, software sustainability captures "Green (in)
Software” and focuses on the development and maintenance of
software that contributes to the reduction of GHG emissions!

* Reduction during development: e.g., reduce compilations, and
minimize relearning in case of machine learning-based software
applications

* Reduction during use: Develop programs that have a minimized
GHG footprint!

« Might be more important because of multiple program executions (1
development but n executions)

Research impact / Mapping studies
and reviews

From: Brunna C. Mourao, Leila Karita, lvan do 14
Carmo Machado, Green and Sustainable 12
Software Engineering - a Systematic Mapping 10
Study, SBQS, October 17-19, 2018, Curitiba,
Brazil,
https://doi.org/10.1145/3275245.3275258

15

13 13

1 1

o N 4 ™
=

2003 2009 2010 2011 2012 2013 2014 2015 2016 2017

From: Birgit Penzenstadler, Veronika Bauer, 40 29

Coral Calero, Xavier Franch, Sustainability in 30 51

Software Engineering: A Systematic Literature 20 12 1 11

Review, in Proceedings of the International 10 —_— 3
Conference on Evaluation and Assessment in 0

Software Engineering (EASE), Jan 2012, 20062007 2008 2009 2010 2011 2012

Review, DOI: 10.1049/ic.2012.0004 —Papers

The GREENSOFT Model

From: Stefan Naumann, Eva Kern, Markus Dick and Timo Johann, Sustainable Software
Engineering: Process and Quality Models, Life Cycle, and Social Aspects, in L.M. Hilty and
B. Aebischer (eds.), ICT Innovations for Sustainability, Advances in Intelligent Systems and
Computing 310, DOI 10.1007/978-3-319-09228-7 11

A sustainable software product ideally meets three conditions:
* The software is produced in a way that meets sustainability objectives.

* The software has minimal negative social and environmental impacts
during its usage (first-order effects).

* The software functionality reinforces sustainable development or at
least has no negative impacts on society or the environment (second-
order and systemic effects).

The GREENSOFT Model (cont.)

GREENSOFT Model

Green and Sustainable Software Model

Life Cycle of Software Products

)Development)) Usage)) End of Life)

First-order Effects

Second-order Effects

Third-order Effects

Sustainability Criteria and Metrics

Directly Related

Indirectly Related

Common Quality

Criteria and Metrics

Procedure Models

) Develop)
) Purchase)

)Administrate)) Use >

Recommendations and Tools

For Developers

For Purchasers

For Administrators

For Users

@E To the extent possible under taw, the person who associated CCO with this work has waived all
Copyright and related or neighboring rights 10 this work

A quality model for sustainable

software

(Indirectly related (Directly related

Criteria

* TO deCide Whether Fit for Purpose
or not SOftWare iS Reduction

)

Travel

Carbon Footprint

Energy

consumption

Feasibility

sustainable, —
appropriate criteria
are required

Waste
Product
Sustainability Infrastructure
Reflectivity Quality Model Sockil Accessibility

Green and Sustainable

Aspects / Usability

Software

Common
Criteria

Organization

)

 Quality aspects:

efficiency

Sustainability
Hardware

Eﬁi Ci e n Cy, CPU-Intensity

Portability

Efficiency }

Reusabillity,

Obsolescence
Y Adaptability

Peripheral

Energy Efficiency

Modifiability, and

Idleness

Usability (extended

Framework Entropy

Functional Types

to sustainability)
DomAN

To the extent possible under law, the person who associated CCO with this work has waived
all copyright and related or neighboring rights to this work. Copyright of Visio shapes by Microsoft
(cloud symbol used in this work). You may distribute drawings that contain the shapes. However, you
may not sell or distribute original or modified Visio shapes.

Process Models of Sustainable Software Engineering
(1) Process-Centric Software Sustainability

« Sustainability Management Process. The management process includes a preliminary phase, a planning
phase, a monitoring phase, and a supplier sustainability control. In the preliminary phase, the principles and
criteria for sustainability are established. In the planning phase, sustainability activities of the development
process are indicated, and the corresponding requirements and necessary resources are planned. Afterward,
the sustainability of the deployed activities and their conformity with the requirements are monitored. The last
part of the management process (supplier sustainability control) deals with sustainability policies and supply and
service requirements. Here, an agreement must be reached, and the supplier’s sustainability needs to be
monitored.

« Sustainability Engineering Process. The engineering process concerns suitable tools and methods to enable
and support a sustainable development process. In this context, sustainable issues and green principles for
development are defined, applied, and analyzed. Energy and resource consumption are factors that impact
sustainability and, thus, should be identified at the start of the engineering process. In the next step, the impacts
of these effects should be analyzed in order to set sustainability objectives for the development process
subsequently. In addition to the impacts of the process itself, the impacts of change requests on sustainability
should be determined.

« Sustainability Qualification Process. The qualification process applies to external resources such as
engineering and management support tools. Aimed at sustainable products, these external resources need to be
sustainable as well. In order to ensure their quality, a qualification strategy, an implementation plan for the
strategy, documentation of the outcomes of the qualification, and a qualification report are required.

Process Models of Sustainable Software Engineering
(2) Agile and Sustainable Software Engineering

* Not a whole process but an extension

« Two main activities:
* Process Assessment (Focus on the sustainability of the software development

process)

* Process Assessment is a continuous activity alongside the software development process. It is meant
to collect and edit data from the process that can be used for a carbon footprint calculation or even for

a life cycle assessment

« Sustainability Reviews and Previews (Focus on the sustainability of the software
product)

* Reviews and Preview meetings are conducted regularly

* Three roles: the Customer Representative, the Development Team, and
the Sustainability Executive

However, can we do better?

» Focus on the automation of producing sustainable software!

Genetlc

Genetic programming/algorithms applied
to sustainable SE

Motivation

» The largest hurdle in producing energy-efficient software is the developer’s disconnect between the
source code they write and the energy that will be consumed from the compiled product they
deliver.

« Without a deep understanding of how a particular compiler works, along with an equally deep
understanding of how much energy a given instruction will consume, the problem remains difficult
for many developers.

« It has been found that metrics previously believed to guide developers to more energy efficient
solutions could be better at doing so.

« Subtle changes, such as introducing inline methods, swapping APl implementations, and
constructing semantically equivalent (but structurally inequivalent) algorithms, have all been shown
to influence energy consumption.

» However, this influence is difficult to determine outside of the ad hoc and inefficient process of
trial and error.

» Tools have to be developed to guide users to energy-inefficient areas of their software.
* Hence, a method of decreasing software’s energy consumption lies in automated processes.

Using genetic improvement in
sustainable software engineering

* Objective: Optimize the energ
consumption of programs but stlll

keep the required functionality y
rogram Pass

» ; ° /P » Fail X
* Idee: Change the program until the +

energy consumption is lowest / Energy

consumption

: : . @ Apply
 Potential solution: Use genetic changes
: P’ behaves like
algorithms/programs for Programp’ | &,
optimization (ako Search-Based lower energy

Software Engineering) consumption

Genetic programming

* Population where each element has
a chromosome

* Apply operators like
Genetic Search: Using
genetic principles to guide

» Selection based on [ema | search
. . (x=3, i2F=3.2, z=4.5)
a fithess function

 Crossover
 Mutation

Questions:
e What are genes?
e What are the operations?

)

Start *

«(x=0, y=3, z=0.2)

to generate new populations

* Represent problem as

Genetic programming
chromosomes comprising

4) mutate o 4
/—P
genes. A set of

\m M chromo§omes is called a
a T~ ‘ population
\ J ﬂ

| e Chromosomes can be
select .

_ J stated as strings (or any
opulation; f .
POP population;,, other collection

crossover

c1 oooooo\
/111000
c2 1/1(1]1]1]1

mutation

C3 1 0(1/0|1 |1 1 0(1|1]1 |1

Genetic algorithm (GA)

» Crossover:
« Selection of 2 arbitrary chromosomes
« Take genes from both to generate a new chromosome

« Mutation:
« Select 1 arbitrary chromosome
« Change 1 or more genes for generating a new chromosome

e Selection of chromosomes:
» Make use of a fithess function

Fithess function

* Maps chromosomes to a particular fithess value

()

0/ 00 0|O0]|O 0.923

Genetic algorithm

In every step we may have
a population of same size.
Use fitness function to
select n chromosomes.

nNo

l

Initialize Population
(Generate population randomly)

We stop when reaching a
criterion, e.g., one
chromosome reached a
certain fitness level.

Stop
criterion
eached?

yes

We may generate a lot of
mutations and other

Select Population using fitness
function

Perform crossover

offsprings using mutation
operators and crossover.

Perform mutation

How to use Genetic Algorithms /
Programming for reducing energy

consumption?

Reducing Energy Consumption Using Genetic
Improvement

Bobby R. Bruce
University College London
ondon
United Kingdom
r.bruce@cs.ucl.ac.uk

ABSTRACT

Genetic Improvement (GI) is an area of Search Based Soft-
ware Engineering which seeks to improve software’s non-
functional properties by treating program code as if it were
genetic material which is then evolved to produce more op-
timal solutions. Hitherto, the majority of focus has been
on optimising program’s exccution time which, though im-
portant, is only one of many non-functional targets. The
growth in mobile computing, cloud computing infrastruc-
ture, and ecological con re forcing developers to fo-
cus on the energy their software consumes. We report on
investigations into using GI to automatically find more en-
ergy efficient versions of the MiniSAT Boolean satisfiability
solver when specialising for three downstream applications.
Our results find that GI can successfully be used to reduce
energy consumption by up to 25%

Categories and Subject Descriptors

D.2 [Software]: Software Engineering

Keywords

Search based software engineering, SBSE, genetic impro;
ment, GI, optimisation, energy optimisation, energy
ciency, energy consumption, Boolean satisfiability

1. INTRODUCTION

Less than a decade ago the quality of software (outside of
end-user design preferences) could broadly be described as
the extent to which software met its specification while min-
imising the prevalence of bugs and usage of traditional com-
puter resources such as CPU time and memory allocation.
The growth in two new technologies, mobile computing de-
vices and cloud services, has led to a new environment for
software engineers where they must now consider the en-
ergy an application consumes; the quality of software is
now measured in Joules, as well as bug counts, seconds,
and megabytes. At present there are more smartphones in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitied. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org

GECCO 15, July 11 - 16, 2015, Madrid, Spain

© 2015 ACM. ISBN 978-1-4503-3472-3/15/07..._$15.00

DO hittp://dx.doi.org/10.1145/2739480.2754752

Justyna Petke
University College London
London London
United Kingdom
j.petke@ucl.ac.uk

Mark Harman
University College London

United Kingdom
mark.harman@ucl.ac.uk

the world than personal computers [22], each containing a
limited store of energy between charges that must be used
efficiently. The energy required to run large server clusters
has grown considerably in the last decade, estimated to be
between 1.1% to 1.5% of global electricity consumption in
2010 [26], putting strain on energy suppliers and the budgets
of those responsible for purchasing this energy [7]. The total
ICT infrastructure generated 1.9% of global CO2 emi:
in 2011 [5] ‘ger than the entire United Kingdom estimated
at 1.47% for the 2010-2014 period [42]) indicating that com-
puter science has a role to play in mitigating climate change

Thus we believe it important that software engineers find
ways of programming computers with energy efficiency in
mind to appease the demands from consumers for longer
battery lif
and from society’s desire to minimise humanity’s impact on
the environment

One of the largest hurdles in producing energy-efficient
software is the developer’s disconnect between the source
code they write and the energy that will be consumed from
the compiled product they deliver [33]. Without a deep un-
derstanding of how a particular compiler works, along with
an equally deep understanding of how much energy a given
instruction will consume, the problem remains difficult for
many developers. It has been found that metrics previously
believed to guide developers to more energy efficient solu-
tions are, in reality, poor at doing so [38]. Subtle changes,
such as introducing inline methods [41], swapping API im-
plementations [33], and constructing semantically equivalent
(but structurally inequivalent) algorithms [8] ha
shown to influence energy consumption. However this influ-
ence is difficult to determine outside of the ad hoc and inef-
ficient process of trial-and-error. Tools have been developed
to guide users to energy-inefficient areas of their software [2,

30, 19] though the developer retains responsibility for
fying these inefficiencies.

We suggest that the most under explored method of de-
creasing software’s energy consumption lies in automated
proces Such processes would allow developers to focus
solely on meeting the specification requirements with wor
ries about non-functional attributes like energy consumption
left to an algorithm capable of refactoring software to a more
optimal state.

Genetic Tmprovement (GI) [20, 25, 27, 28, 4
44] is a Search Based Software Engineering (SBSE) tech

ions

from companies to reduce their energy bills,

been

nique [21] which treats program code as if it were genetic
-

material that can then be evolved to produce optimised
lutions. GI has previously been found effective at optimi

* Program and its Genotype Representation:

Source code conversion

Select lines that might be changed

A gene represent sequences of selected lines
Introduce source code change operations (for

mutation

DELETE (delete a line of code)
REPLACE (replace one line with another
COPY (copy a line to another location

Assumption: All required information is already in the
av?llable source code! Consider similar statements
only.

Example: a while loop (e.g., x>5) can be replaced
with the condition of another while loop (e.g., y==

Genetic improvement (cont.)

 Fitness Function: Energy consumption

The fitness of a candidate solution is determined by measuring the total energy consumed (see Section 2.4)
across all tests selected from the training set (see Section 2.3) when using the original unmodified software

divided by the energy consumed by the phenotype across the selected tests. Thus, a fitness greater than 1

indicates a solution that consumes less enerqgy, while a fitness less than 1 indicates a solution that

consumes more energy.

e Selection:

Each selected test case can either be passed or failed. A test is deemed to have passed when the modified
version categorizes a test as satisfiable or unsatisfiable, with that categorization equal to the categorization
produced by the original MiniSAT. We use the original code as an oracle to guide the Gl to functionally
correct solutions. When a test is found to have failed, the energy consumption or that test case is not
included in the fitness evaluation, and instead, an appropriate penalty is applied. To be selected for the next
generation, a solution must have a fitness of above 0.95, have passed an appropriate number of the
selected test cases, and be in the top 50% of the population.

Genetic improvement (cont.)

 Crossover:

Crossover is carried out by selecting one parent based on fitness and another chosen randomly from
the selected individuals. Due to the simplicity of the genotype representation, crossover consists of
appending one genotype to another, producing a new individual. Crossover is carried out until the
population size, after selection, has doubled.

 Mutation:

After crossover, mutations are applied to the selected genotypes. Prior investigations have shown Gl
frameworks such as this can lead to bloat, resulting in effective solutions being encumbered with
ineffective mutations. For this reason, elitism has been implemented so that the top 5 solutions in
each generation move forward to the next without mutation. The remaining selected individuals have a
50% chance of having a mutation applied. Mutations consist of adding a random DELETE, REPLACE,
or COPY modification to the genotype. If the population after crossover has not met the preset
population size, then single, random mutations are added as entirely new genotypes until the
population size is met.

Genetic improvement (cont.)

« Carrying out the experiments
* Program to be optimized: MiniSAT (MiniSAT2-070721)
* MiniSAT applications: CIT, Ensemble, AProVE
 Test cases during the search are selected depending on the application

 Estimation of the energy consumption:

* Intel Power Gadget API for Mac OS X2, which estimates the energy
consumption of 2nd Generation and higher Intel Core processors

* Intel Power Gadget uses drivers and libraries to read the processor’s
special energy model-specific registers (MSRs) over a specified time
period. These register readings are then used to calculate the total
energy consumed.

Experimental results

* Energy consumption reduction using Gl

Application Original(J) Champ(J) Reduction(%)
CIT 3111 2969 4.58
Ensemble 2232 1665 25.39
AProVE 3145 2973 5.44
I} : - I} I} %
Original MiniSAT Chan:pion Original MiniSAT Chan"1pi0n Original MiniSAT Chan;pion
(a) CIT (b) Ensemble (c) AProVE

Experimental results (cont.)

« Can we optimize for one SAT application and use it in another?

- On CIT On Ensemble On AProVE
CIT - X X
Ensemble X X

AProVE 3.56% 3.86% / -

An X indicates a time out

* Most likely no (or at least not always)

Energy consumption vs. runtime

Application Unmodified(s) Champion(s) Reduction
CIT 268 261 2.58%
Ensemble 219 162 25.89%
AProVE 230 201 6.69%
g 1 g - 8 &
_ o _ i C -8 @
% s %’ - 4-;““ % é
g §] %’ g o 27’5 g & °
’ e TRl AT : oo
8 | »y S | N 8 4
2 3 = /g
° 10 2‘0 3I0 40 - 0 1b ZIO 3b 4b 5I0 Gb 1b Zb 30 40

These findings show that for CPU-bound processes, such as MiniSAT, optimizing execution time exclusively
produces more energy-efficient solutions (and vice-versa).

Time (Seconds)

(a) CIT

Time (Seconds)

(b) AProVE

Time (Seconds)

(c) Ensemble

Summary & Conclusions

Summary

* Discussed and defined the term “Sustainable Software
Engineering” / "Green Software”

* Discussed influencing factors of sustainability of Green in
Software

* Introduced a method for converting programs into ones that
require less energy resources (Genetic Improvement / Genetic
algorithms, Search-based Software Engineering)

Other conclusions

* The term “sustainable software engineering” is not commonly
agreed on.

* Finding better (= less resource requiring) programs is valuable,
leading to green software

» Less runtime seems to lead to less energy consumption

* Al approaches like GA can be used to adapt programs for
resource efficiency

* Other ideas include using Expert Systems / Decision Support Systems
to come up with programs requiring fewer resources..

 We may use LLMs or other deep-learning models for thls purpose

