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Current State

Distributed Systems are key to our
society

Underly our critical infrastructures
and applications (Smart cities,

Healthcare, Autonomous vehicles,...

Interconnectedness (fabric) of
components (HW, SW, People)
induces complexity

We increasingly see fundamental
issues we need to address
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Distributed Compute Continuum: A high level view
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Low reliability “Unlimited” compute/storage

Edge of the (mobile) network

- resources
Volatility Low latency to end device
Mobilit Full spectrum of cloud
ooty Close to/collocated with 4G/5G base services
. . . t t'
(Mostly) Wireless connectivity stations High availability
Small form factor General purpose compute

infrastructure Lower cost

Battery constraints .
Standards-based architectures & Higher latency vs. edge/fog

management/orchestration stacks Cloud provider controlled
User/Service provider controlled Telecom operator controlled 3

Mobile, loT, smart home, vehicles, ...



Distributed Computing Continuum Systems

Autonomous vehicles

eHealth
Industry 4.0
VR/AR

Resources (food, waste, energy...)

management

These applicationswill
improve their current
versions (imagine all
vehicles driving to minimize
consumption)

BUT the distributed
computing continuum will
also require more energy.

Global greenhouse gas emissions by seclor

This is shown for the year 2016 — global greenhouse gas emissions were 49.4 billion tonnes CO,eq.
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OurWorldinData.org - Research and data to make progress against the world's largest problems.

Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020).

Hannah Ritchie, Max Roserand Pablo Rosado (2020) - "CO, and Greenhouse Gas Emissions".
Published onlineat OurWorldIinData.org. Retrieved from: 'https: //ourworldlndata org/co2-
and-greenhouse-gas-emissions' [Online Resource]



Annual global corporate investment in artificial intelligence

[ ]
Sum of private investment, mergers and acquisitions, public offerings, and minority stakes, This data is expressed in
O r]/] p l | I Iﬂ g e Iq e rg y e m a r \ US dollars, adjusted for inflation.
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[1] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the Dangers of Stochastic Parrots: Can 1 billion o e 04, @ Drowing
Language Models Be Too Big?,” in Proceedings of the 2021 ACM Conference on Fairness, Accountability, and 100 million St Alphazero _}s.m SALE 2, M Gomes
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Publication date
Source: Sevilla et al. (2022) QurWorldinData.org/artificial-intelligence « CC BY

Note: Computation is estimated based on published results in the Al literature and comes with some uncertainty. The authors expect the estimates
to be correct within a factor of 2.

Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO, and Greenhouse Gas Emissions". Published onfine at
OurWorldIinData.org. Retrieved from: 'https://ourworldindata.org/co2-and-greenhouse-gas-emissions' [Online Resource]



Towards Sustainable Distributed Computing
Continuum Systems

* Energy awareness
 Origin (green-renewal, battery, main distribution, ...)
* Usage (Computing, storing, data transfer, ...)
* Forecast(Consumption seasonality, computing peaks, ...)

* Most of current research is currently on Energy-efficiency.

* Given a specific usage, new algorithms to reduce the recorded
consumption are needed.

* Precise energy-awareness (specifically of the origin) is HARD to obtain.



The human body is comprised of a series of complex systems, including:

\ARRERRRES » Skeletal System

& ------ > Nervous System ——=3 |nfrastructure Systems

.» Cardiovascular System

o » Lymphatic System
| \ ~3 Regulation Systems

*++ % Endocrine System

® Brain ® Oxygen
® Spinal Cord ®  White Blood CeIIS)rg
. Helping th h 40k
P Cranial Nerves ° Hormones elping the body meet the demands (40k neurons)

s

®  Spinal Nerves ®  Nutrients

| &

Control Internal Environment, Memory and Learning (86 billion neurons)
Human Ecosystem
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The human body is comprised of a series of complex systems, including:

\ ......... » Skeletal System

""" » Nervous System ~——3 |nfrastructure Systems

...» Cardiovascular System
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Human Ecosystem



o » Skeletal System
DeepSLOs

------ » Nervous System S InfrastructureSystems< Collaborative Learning

Representation Learning

.%» Lymphatic System
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‘ ‘ ...» Cardiovascular System
o

J. VY ~——3 Regulation Systems e—  zZeroTrust
" ++% Endocrine System

®  Part of the immune system

®  Protects your body against foreign invaders
® Control and coordinate your body's metabolism

® Responseto injury, stress, and mood

Human Ecosystem



Sustainable Distributed Computing Continuum

Metrics: Power
Energy source consumption Battery status

* Qur vision aims at increasing the
Optimal

intelligence of the underlying
the tools to handle energy-efficiency. ettery
SLO: range
of requests Total
C0, emitted
Elasticstrategy
[ (Changeen)ergy }

Elasticstrategy
(Harvesting

mode)

Comm.
energy peruser

computing infrastructure to provide
. . (Cloud)

« We want to use hierarchically- o

structured set of SLOs (DeepSLOs) to eatic

acquire a layered energy profile of the

. . . . Elasticstrategy

system. This will allow to optimize o ™ st computar

proximity

energy efficiency at the stages which | Avstrction || inferences
IS more effeCtlve. Application

N / QoSrange - = —->

Elasticstrategy
(Modify data
granularity)




Sustainable Distributed Computing Continuum

Systems

e Each SLO works following a MAPE-K
(extended) schema. N N/

* Higher abstracted SLOs can access i

e e e e e e e e e e e e — —_

policies from lower SLOs. -
* Obtaining a loosely-coupled i
. . : : _ Knowledge Execute |-
interaction between SLOs managing i \
the system i
| Sensor Actuator [ —

Managed system

Sensor Actuator

Environment




Sustainable Distributed Computing Continuum
Systems

* |s that enough?

e Does sustainability allow us to keep a continuous and steep increase
on the computational requirements in our society?

* Similarly as it is done with CO,, could computation have a limited
usage?

* Can we develop systems with a fixed computational budget?



in DCCS

Human body self-regulates:

® Temperature

® Blood pressure
Y > Nervous system o

Human body self-heals

Humans also learn how to maintain her/his
needs satisfied.

Human Ecosystem 13



Human Ecosystem

Nervous system

in DCCS

Overall state - Top-bottom sensing.

From feeling good-bad to actual problem.

. ®

We also need this feature for DCCS due to
their scale and interconnections.
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Elasticity (Resilience)

(Physics) The property of returning to an initial form or state
following deformation

stretch when a force stresses them

e.g., acquire new resources, reduce quality

shrink when the stress is removed

e.g., releaseresources, increase quality _\%



Elasticity > Scalability

Resource elasticity
Software / human-basad

i e, COMputing elements,
ww® multiple clouds 19

Quality elasticity
Mon-functional parameters .9.,
performance, quality of data,
service availability, human
trust

L ]

:"’ - Costs & Beneflt elasticity
H}' rewards, incentives

Elasticity space

Dustdar S., Guo Y., Satzger B., Truong H. (2012) Principles of Elastic Processes, IEEE Internet Computing, Volume: 16, Issue: 6, Nov.-Dec. 2012



http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel%20PrinciplesOfElasticProcesses%20SD.pdf
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6355499

High level elasticity control

#SYBL.CloudServicelLevel

LoadBalancerUnit g‘
Cons1l: CONSTRAINT responseTime< 5 ms

EventProcessingUnit T2:STRATEGY CASE responseTime < 10 ms

Consz: CONSTRAINT res ponseTime < 10 ms EventProcessingTopology @ AND avgThroughput < 200 operations/s:scalein;
WHEN nbOfUsers > 10000 - |
Strl: STRATEGY CASE fulfilled(Cons1) OR §P2:CONSTRAINT responseTime <30 ms
fulfilled(Cons2): minimize(cost)
#SYBL.ServiceUnitLevel -

ElasticloT
Str2: STRATEGY CASE ioCost < 3 Euro:: @‘ewhﬂgjce%m”““@
maxim iZE( dataFreshness ) an :STRATEGY CASE avgBufferSize < 50 #:scalein;
#SYBL.CodeRegionlLevel
Cons4: CONSTRAINT dataAccuracy>90% AND PataContrellertnt O
Cost<4 Eu ro DataEndTopology E:rataNodeUnit Sﬂ :STRATEGY CASE cpuUsage < 40 %:scalein;

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "SYBL: an Extensible Language for Controlling Elasticity in Cloud Applications", 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 14-16, 2013, Delft, Netherlands

Copil G., Moldovan D., Truong H.-L., Dustdar S. (2016). rSYBL: a Framework for Specifying and Controlling Cloud Services Elasticity. ACM Transactions on Internet Technology
17



Elasticity Model for Edge & Cloud Services

Moldovan D., G. Copil, Truong H.-L., Dustdar S. (2013). MELA: Monitoring and Analyzing Elasticity of Cloud Service. CloudCom 2013

Elasticity Pathway functions: to characterize the
elasticity behaviorfrom a general/particularview

Elasticity Pathway
,’, Quality
/ Elasticity Space Boundary
/ o Quality N
. \ ' 'jj 3 Quality s
I,,//‘\\ /{4\ 5 .
— N 0 0 )
O g — //)‘A N
~o_ ) —
T Cost ——//F——=\ B

S~ Cost

Elasticity space functions: to determine if a service el ] \

-~

unit/service is in the “elasticity behavior” =~
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High-level state

Resources, Quality, Cost

Cartesian Blanket

A Elastic space for computing-
continuum systems

e Highest-level description of system state from Cloud
computing/elasticity work [1].

e DCCS have many different stakeholders with different interests, RQC can
frame a common language. Quality |

Resources

| Cost

Operational equilibrium

e Defined as an operational mode of the application, from the highest
level state.

® Any system can have several operational equilibria, leading to different
configurations of the underlying infrastructure

[1]S. Dustdar, Y. Guo, B. Satzger, and H. L. Truong, “Principles of elastic processes,” IEEE Internet Computing, vol. 15, no. 5, pp. 66—71, Sep. 2011, doi: 10.1109/MIC.2011.121.
19
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https://doi.org/10.1109/MIC.2011.121

The Cartesian Blanket
Adapting elasticity in the continuum

* System control based SLOs (Service Level Objectives) Cartesian Blanket

A Elastic space for computing-
continuum systems

* SLOs are represented as thresholds on the Cartesian Rn. |
Space R R i

Rmin

* The system space is delimited within an hexahedron.
* There is minimum and maximum value for each variable




The Cartesian Blanket
Adapting elasticity in the continuum

. . . Cartesian Blanket
i The Space IS constraint to the actual mfrastructure

.. A Elastic space for computing-
CharaCte”SthS; not hOmogenOUS. continuum systems
* The infrastructure is represented as points, not Rmax o= .
unlimited. N
N .
* The only valid infrastructure is the one inside the

hexahedron. Rrmin




The Cartesian Blanket
Adapting elasticity in the continuum

* The system space possible configurations can be
visualized as a stretched blanket over the A | |
. . Elastic space for computing-
infrastructure points. continuum systems

* Assuminglinear interpolation on the space between the
infrastructure components.

Cartesian Blanket

@

* Now we have the system represented, but

How can this representation help on the design and
management of the distributed computing continuum
systems?

22



Markov Blanket

Statistical perspective [1]

The Markov Blanket provides conditional independence to its central variable.
Hence, its central variable can be inferred only by the values of its Markov Blanket.

Ontological perspective [2]

Separates a thing from all its environment due to conditional independence.
Defines 4 types of nodes:

e The internal node (N): the thing.

e The external nodes (E): The environment.

e The Markov Blanket states (S,A):
O The sensory nodes (S): Receive input from the E and act on N.
O The action nodes (A): Receive input from N and act on E.

[1] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc.

[2] K. J. Friston, - Klaas, E. Stephan, and - K E Stephan, “Free-energy and the brain,” Synthese 2007 159:3, vol. 159, no. 3, pp. 417-458, Sep. 2007, doi:
10.1007/511229-007-9237-Y.

23
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Markovian Blanket for DCCS

We aim to define DCCS based on the Markov Blanket abstraction with
different granularities due to its nesting capacity.

Coarsest granularity:
o Central nodes are Resources-Quality-Cost. Highest abstraction level SLOs are
influencing them.
o Overall configuration options (operational equilibriums) are defined to adapt
the system at that level.

Finest granularity:
o Asingle SLO, influenced by a subset of metrics from the infrastructure.
o Affects a subset of action states able to precisely affect infrastructure state.

24




Markovian Blanket for DCCS

We aim to define DCCS based on the Markov Blanket abstraction with ST
different granularities due to its nesting capacity. From an application
perspective

Coarsest granularity:
o The entire application, i.e. managing all mobility of autonomous vehicles in a
smart city

Finest granularity:
O A service to assess traffic congestion.

Nested capacity can be cast as a causality filter to focus on the most
relevant autonomic component.

25



Markovian Blanket for DCCS — Big Picture

Learning framework

Specified by the application requirements Requires learning
y A A
f A r A
W w
8 Markov Blanket / g
= S
W
? 0 S 5| 3
o — n w0 _— = @
S T L c fs
(S T = o ] £
— Q0 —p 3] — o
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SLO Management with Polaris SLO Cloud

https://polaris-slo-cloud.github.io/polaris/

\\\\\\\

polaris-slo-cloud

Management of SLOs in Edge-Cloud native
systems

Project between TU Wien/DSG and Futurewei

USA -
Fully Open-Source project carried by Linux
Foundation since Jan 2021 —

Core concept -> Polaris SLO Controllers (custom

o -
Kubernetes controllers but not limited to), enabling:

* Specifying custom SLOs (based on TypeScript) 0: n

* Monitoring of SLOs M

ez ¥ 3 Q0 110 Updatedonlul 16

2 models for predictive based on LSTM enabling

igh-level SLOs)
* Resource monitoring
* Enforcing SLOs during at runtime (IEIa_sticity control |
strategies e.g., for modifying topologies etc.) .



Polaris Controllers Very High-Level Overview

Monitoring

Decoder output

Y5 Y6 Y7

1- DoF inner dimension
2- DoF number of heads
3- DoF QKV dimension

Encoder output
Encoder

Linear

Add &

Encoder Layer 2
L]

Decoder Layer 2
"

Feed Forward

Feed Forward

[ Encoder Layer 1 ]

[ Add & Nomalize |

Atte
Add &

r-decoder
ntion

/ * Decoder Layer 1
(__Setattenton ]| (L Pos Encoding
2,3
1

x1‘x2 x3|x4 Y1‘Y2|Y3|Y4

Encoder input Decoder input

Nastic, S., Morichetta, A., Pusztai, T,
Dustdar, S., Ding, X., Vij, D. and Xiong, Y.,
2020. SLOC: Service level objectives for
next generation cloud computing. IEEE
Internet Computing, 24(3), pp.39-50.

Self-attention

1. value. efficiency)

Pusztai, T., Morichetta, A., Pujol, V.C., Dustdar, S., Nastic,
S., Ding, X., Vij, D. and Xiong, Y., 2021, September. SLO
script: A novel language for implementing complex cloud-
native elasticity-driven SLOs. In 2021 IEEE International
Conference on Web Services (ICWS) (pp. 21-31). IEEE.

Control Elasticity

export class HorizontalElasticityStrategyController extends HorizontalflasicityStrategyControllerBase<
SloTarget,
HorizontalElastici

>{

rategyConfig

protected computescale(elasticityStrategy: ElasticityStrategy<SloCompliance, SloTarget, Horizontaltlast
const newScale = new Scal Scale);
1f (elasticityStrategy.spec.sloOutputParams.currsloConpliancePercentage > 108) {
neuscale. spec.replicas++;
} else {
newscale. spec.replicas--;

}

return Promise.resolve(newscale);

Nodes.

Node j
Facilities
Controllers
Sink t 9

Pusztai, T., Morichetta, A., Pujol, V.C., Dustdar, S.,
Nastic, S., Ding, X., Vij, D. and Xiong, Y., 2021,
September. A novel middleware for efficiently
implementing complex cloud-native SLOs. In 2021 I[EEE
14th International Conference on Cloud Computing
(CLOUD) (pp. 410-420). IEEE. 28



Resea rCh “ne - MOdel e How to deal with a multimodal environment?

Markovian models

e Markov blanket (DAG) o
e Markov fields (non directed graphs)
e Markov chains

How to model relations?

Deep neural networks e How to treat abstraction?

e Federated learning
® Graph neural networks

Agen
gent based e How to obtain enough data?

® Active inference

® Reinforcement learning
® And many more... How to deal with IID data? How to

tackle uncertainty?

29



Research Roadmap — Quality of Experience

Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence, IEEE Internet of Things Journal, Vol.7,
Issue 8, pp. 7457-7469

Quality of Experience (QoE) 1. Performance
Problem-based Indicators . . o
Performance T oy E.g., the ratio of computation offloading

Computation Resource (delay)

Cost Communicational Resource (latency) 2 Cost
Energy Consumption
Computation | Communication | Energy consumption costs

Privacy (Security)

Efficiency
Reliability 3. Privacy & Secu rlty
; | s Federatedlearning, i.e., aggregating local machines models
AI for Edge AT on Edge from distributed edge devices
Computation Offloading Model Compression
Service User Profile Migration . Conditional Computation . .
! Mobility Management Adl:pi?atlion Algorithm Asynchronization 4' EffICIency
: — ; Thoroughly Decentralzation Excellent performance with low overhead, e.g., model
i lata Frovisioning i . . . .
N S L e __ compression, conditional computation
b"ttom"}:" Content Placement Y Training Knowledge Distillation " t"p'd""‘_"tr!
e ‘ servies Composition Fr?)r:::v:rk I ° ege
! — L e Partitioning 5. Reliability
E i e Relatesto model upload and download and wireless network
i Edge Site Orchestration i .
i Instrcution Set Design CO nge Stl O n
Topology Wireless Data Acquisition Az:::f:rs:t?;n Parallel Computation

Networking .
Network Planning Near-data Processing

30



Al for Edge

Y
Al for Edge
1. TO p0|0gy Computation Offloading
* Edge orchestrationand coordination with small base Service User Profile Migration
stations A Mobility Management

* Unmanned Aerial Vehicles (UAVs) and access points

Data Provisioning

2. Content .

Lightweight service frameworks for QoS-aware services, bottom-up o .
. . approach
e.g., on mobile devices

Provisioning

Placement
Service

Composition

A
]
° i Caching
3.Service ;
Computation offloading, User profile migrationand mobility i Edge Site Orchestration
management .

Topology Data Acquisition

Wireless

Networking Network Planning

Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence,/EEE Internet of Things Journal,
Volume 7, Issue 8, pp. 7457-7469



Grand Challenges — Al for Edge

 Model Establishment — restraining the optimization model
e Stochastic Gradient Descent (SGD)
« MBGD (Mini-Batch Gradient Descent)

* Algorithm Development

e Selection of which edge device should be responsible for deployment and execution
in an online manner

* SOTA formulates combinatorial and NP-hard optimization problems with high
computational complexity

* Trade-off between optimality and efficiency
* Consider resource constraint devices

Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence, IEEE Internet of Things Journal,

Volume 7, Issue 8, pp. 7457-7469
32



Al on Edge

e Data Availability

e Challenge of lack of availability and usability of raw
training data for model training and inference

* Bias of raw data from various end user/mobile
devices

e Model Selection

* SOTA requires selection of need-to-be trained Al
models has challenges

* Threshold of learning accuracy and scale of Al
models for quick deployment and delivery

* Selection of probe training frameworks and
accelerator architectures under limited resources
e Coordination Mechanisms

e Coordination between heterogeneous edge
devices, cloud, and various middlewares and APIs

Y
Al on Edge

Model Compression

Conditional Computation

Model
Adapi;atlon Algorithm Asynchronization
! Thoroughly Decentralization
'
|
| .
. Federated Learning
1 Model
Y Training Knowledge Distillation
Framework
Design .
" Model Partitioning
= Inference -
I Splitting
|
|
Y _ _
Instrcution Set Design
Processor
Acceleration Parallel Computation

Near-data Processing

Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence, IEEE Internet of Things Journal,

Volume 7, Issue 8, pp. 7457-7469

the
top-down
decomposition

33



Managing the Al Lifecycle

Al lifecycle pipeline with a rule-based trigger e that monitors available dataand runtime
performance datato form an automated retrainingloop

S ~.
v
Preprocess H Train ]—b[ Evaluate ]—><>—>[ Deploy ]

v

Performance Runtime
— e [ Monitoring} ------ P Model
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Al Operations Workflows — Edge to Cloud

Data characteristics

Model characteristics

Enabling technologies

Example use cases

C2C - Training data is centralized - Models are large - Scalable learning infrastruc- - Image search
- Massive data sets - Huge number of inferencing re-  ture [39] - Recommender systems
quests need to be load balanced - Data warehousing
C2E - Training data is centralized - Inferencing may need to happen - Model compression [42] - Surveillance systems
- Inferencing data may be sensi-  in near-real time - Latency/accuracy tradeoff [43] - Self driving cars
tive - Large number of model deploy- - Distributed inferencing [44] - Fieldwork assistants
ments - Transfer learning [45]
- Models run on specialized hard-
ware
E2C - Training data is distributed - Models can be centralized - Decentralized/federated learning - Volunteer computing
- Training data may be sensitive - Huge number of inferencing re-  [41] - Novel Smart City use cases
quests need to be load balanced
E2E - Training data is distributed - Inferencing may need to be near- - Decentralized/federated learning - Industrial IoT (e.g., predictive

- Training and inferencing data
may be sensitive

real time

- Distributed inferencing

maintenance)
- Privacy-aware personal assistants
- Novel IoT use cases

Rausch, T., Dustdar, S. (2019). Edge Intelligence: The Convergence of Humans, Things, and Al. In /EEE
International Conference on Cloud Engineering (IC2E) 24-27 June 2019.
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Conclusions

1. Leverage the “Distributed Computing Continuum® from
loT->Edge->Fog->Cloud

2. Need for an Edge Intelligence Al Fabric and a “clear”
distributed systems ecosystems understanding

3. Differentiate between Al for Edge and Al on Edge. Both
bring their distinct research challenges

36
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