

703365 Sustainability in Computer Science: Green HPC: Paving the Way for Sustainable Supercomputing

Philipp Gschwandtner, Research Center HPC, 30.10.2023

What is Green HPC?

"environmentally friendly"

High Performance Computing

"[...] uses supercomputers and computer clusters to solve advanced computation problems" (Wikipedia)

Green HPC

Why is energy consumption relevant in HPC?

• Example: Frontier

- currently the fastest supercomputer world-wide, located in Oak Ridge, Tennessee, USA
- Extreme computing and storage capacities
 - 8,7 million cores
 - 9,2 petabytes of main memory (RAM)
 - 753 petabytes of storage
 - measured peak performance of ~1,2 exaflops (>10¹⁸ arithmetic operations per second)
- High electrical and thermal operating requirements
 - 23 megawatts of power
 - the main limiting design factor when building supercomputers

How much is 23 megawatts?

100% Frontier supercomputer

- 40% Aurora supercomputer
 (expected no. 1 in November 2023)
- 32% of Innsbruck
- 7x University of Innsbruck
- ▶ 3,5x University of Vienna

To be able to optimize, we need to measure first!

Need power/energy instrumentation

- "homemade" examples on the right, good for experimental research but does not scale to large systems (also: fire hazard!)
- modern supercomputers have this built-in
- note that there is also a plethora of power/energy models – some better, some worse
- Need metrics to be able to evaluate, compare and optimize
 - e.g. Power Usage Effectiveness

 $PUE = \frac{\text{total facility energy}}{\text{IT equipment energy}}$

e.g. Energy-Delay Product (EDP)
 EDP = energy × walltime

Voltech PM1000+

PowerMon2

PowerSensor 2

TOP500 List

List of the fastest supercomputers world-wide

- released twice every year
- high performance linpack (HPL) benchmarking (linear algebra stress-testing)
- very interesting analyses and statistics around supercomputing and HPC
- https://www.top500.org
- Currently June 2023 edition
 - Power consumption reported for many (but not all!) systems
- Also: Green500
 - Performance-per-energy ranking

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,824,768	238.70	304.47	7,404

Green500 measurement methodology

- 33 pages of definitions: measurement devices, topology, workload requirements, averaging, etc.
- Level 1 requires to measure
 - ► The entire "core" phase ≥1 minute, compute-nodes + measure or estimate network interconnect
 - Power and take the average, at least std::max({2 kW, 10% of the system, 15 nodes})

Level 2

- Level 1 + average power of full run, intermediate measurements (at least 10 averages in core phase)
- Compute-node subsystem + measure or estimate all other subsystems, at least std::max({10 kW, 12% of the system, 15 nodes})

Level 3

- Level 2 but measure energy and compute average power consumption
- Energy measurement resolution: 120 Hz for DC, 5 KHz for AC, entire system (all components, all nodes, no extrapolations!)

Rank	TOP500 Rank	System	Cores	Rmax (PFlop/s)	Power (kW)	Energy Efficiency (GFlops/watts)
1	255	Henri - ThinkSystem SR670 V2, Intel Xeon Platinum 8362 32C 2.8GHz, NVIDIA H100 80GB PCIe, Infiniband HDR, Lenovo Flatiron Institute United States	8,288	2.88	44	65.396
2	34	Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	120,832	19.20	309	62.684
3	12	Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Suprieur (GENCI- CINES) France	319,072	46.10	921	58.021
4	17	Setonix – GPU - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Pawsey Supercomputing Centre, Kensington, Western Australia	181,248	27.16	477	56.983

Power consumption projected to 1 exaflop

Top in 🔶 Green500 📥 Top500

https://www.hpcwire.com/2021/07/15/15-years-later-the-green500-continues-its-push-for-energyefficiency-as-a-first-order-concern-in-hpc/

Avenues of optimization

- Multiple attack points for making HPC more energy-efficient
 - increased parallelism
 - cooling
 - what and how the hardware is used
- When working with energy-efficient HPC, it's always a multi-objective problem
 - optimizing for power and/or energy often means sacrificing (a little bit of) performance
 - e.g. Pareto-optimality

Reducing energy in computing: Parallelism!

50 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batter New plot and data collected for 2010-2021 by K. Rupp Reducing energy in computing: Accelerators!

- Accelerator market share in HPC has been steadily increasing and will likely continue to do so
 - Why? Distributed memory clusters with accelerators provide some of the best cost- and energy-efficiency in HPC
 - All 10 out of the top 10 entries in the November 2022 "Green 500" list are accelerator clusters (9/10 GPUs)

No. of accelerated systems in Top500

A closer look at power efficiency

- 8 of the top 10 systems above 10 GFLOPS/Watt use accelerators (2021 data)
- Exceptions:
 - Fugaku: ARM-based, no accelerators
 - Tianhe-2A: Matrix 2000 accelerators (128 core RISC CPUs)

Rmax and Rpeak Power Efficiency

Power efficiency of all TOP500 systems (2021)

Reducing energy in computing: Tuning!

- Lots of research in software means for reducing energy consumption
- Top figure: effects of instruction mix on energy consumption of an IBM POWER7 CPU (using GCC vs. IBM XL compilers)
 - Result: In general, IBM XL produces more efficient binaries, but not always!
- Bottom figure: Dynamic Frequency and Voltage Scaling (DVFS) of the Intel SCC (experimental manycore CPU)
 - reduce clock frequency to save power and often also energy, effect heavily depends on workload
 - used in most CPUs these days (laptops, desktops, server, smartphones, etc.)
 - used on supercomputers (e.g. Energy Aware Runtime)

Reducing energy in cooling: use oil!

- VSC-3, fastest supercomputer in Austria in 2014
 - ranked 85th world-wide
 - > 32.768 cores
 - ▶ 450 kW
 - mechanical PUE of 1.02!
 - compare to VSC-2 (water-cooled): mPUE of 1.18
 - ▶ VSC-4 (water-cooled): 1.05

"Immersion cooling"

Supermuc-NG (Lenovo SD650 nodes, direct water cooling)

Lenovo SD650 direct water cooling

Cooling technologies

Air cooling

easy to build and maintain, inefficient

Direct water cooling

- warm: difficult to build and maintain, very efficient, only for cooler climates ("free air cooling")
- cold: difficult to build and maintain, semiefficient, for warmer climates
- Indirect cooling
 - cool hardware with air, cool air with water

2020 survey among tier-0 and tier-1 HPC sites in Europe

ESIF data center, NREL (PUE of 1.06)

How can we recycle any remaining energy consumption?

HPC for Sustainability

Open issues

- There is more than just energy and power
 - Carbon Usage Effectiveness (CUE)
 - Water Usage Effectiveness (WUE)
 - Space Usage Effectiveness (SpUE)
- There are too many metrics and many are inaccurate
 - Power Usage Effectiveness (PUE)
 Partial PUE (pPUE)
 - Energy Reuse Effectiveness (ERE)
 - Energy Reuse Factor (ERF)

- The metrics are often flawed
 - e.g. PUE cannot be used to compare HPC sites in different climate zones
- There are diverging interests
 - Operator: minimize power/energy, maximize workload throughput
 - User: minimize wall time
 - Taxpayer/politicians: minimize costs

Future developments and ideas

High-bandwidth memory (HBM)

Memory and computational units physically as close together as possible, minimize data transport distance

Fabrication size reduction

- Research in new designs and materials (away from silicon) to decrease below ~2 nm threshold
- Near-threshold voltage computing
 - operate CPUs below power safety limits, accept computational errors and mitigate in software (e.g. iterative solvers)

Special purpose hardware

- Accelerators (scientific computing, AI, etc.)
- FPGAs
- Custom hardware designs for domainspecific problems

Optical computing

- Use photons instead of electrons
- Various approaches in research, not clear yet if viable alternative

Reversible computing and Landauer principle: the future?

- There's a lower theoretical limit ("Landauer limit") to energy consumption of computation
 - Irreversible computation (e.g. logical AND) erases information, hence must be accompanied by corresponding entropy increase (=heat) in a closed system
 - ▶ because thermodynamics $^{()}/^{-}$
 - Landauer limit is approx. 0.0175 eV or 2.805 * 10⁻²¹ J at room temperature
 - We're currently still several orders of magnitude away from that...

Reversible computing and Landauer principle: the future?

- Koomey's Law: The number of computations per joule doubles every 1.57 years
 - Coupled with Landauer limit: no more energy efficiency increase after 2080...
 - Also applies to quantum computing
- Solution: reversible computing
 - In theory, computing without losing information doesn't need to increase entropy, hence no heat

Today's takeaway

- There's a lot of research and engineering going on
 - in sustainability for HPC
 - in sustainability with HPC
- Power/heat are the main limiting factors in HPC
 - almost everything uses water cooling these days
 - waste heat is recycled as much as possible and "freely cooled" afterwards (no active chillers)
 - short-term developments quite clear, longterm future very unclear

- How to reach me/us
 - philipp.gschwandtner@uibk.ac.at
 - https://dps.uibk.ac.at/~philipp
 - https://uibk.ac.at/fz-hpc

Image sources

- Green HPC: <u>https://www.hpcwire.com/2021/07/15/15-years-later-the-green500-continues-its-push-for-energy-efficiency-as-a-first-order-concern-in-hpc/, https://www.chemistryworld.com/features/oil-spill-cleanup/3008990.article, Marcel Ritter (UIBK), https://twitter.com/maven2mars/status/984440044659159040, https://www.nasa.gov/ames/image-feature/nasa-highlights-simulations-at-supercomputing-conference-like-aircraft-landing-gear</u>
- TOP500 Trend: <u>https://www.top500.org/statistics/perfdevel/</u>
- Lenovo SD650 Water Cooling Images and Animation: <u>https://lenovopress.lenovo.com/lp0636-thinksystem-sd650-direct-water-cooled-server-xeon-sp-gen-1</u>
- Cooling Technology Survey: https://events.prace-ri.eu/event/1186/attachments/1587/2924/Shoukourian.pdf
- ESIF Data Center: <u>https://www.nrel.gov/docs/fy21osti/79712.pdf</u>
- ▶ IBM Research Energy Reuse: <u>https://www.zurich.ibm.com/st/energy_efficiency/zeroemission.html</u>
- Wind turbine: <u>https://www.nrel.gov/docs/fy22osti/81212.pdf</u>