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Technological Problems

Decoherence : Qbits are not stable
=> State of a gbit decays over time (often, rather quick!)
— Implementation of gbits disturb each other
=> Increasing number of gbits is quite difficult

Gate Infidelity : Each operation 1s (a bit) imprecise
=> Error of an algorithm increases with number of opertions
= Only algorithms with "few" operations can be executed precisely

Readout Error: Measurement of a gbit 1s imprecise
= Results are distorted

Obit Connectivity : Not all gbits are physically connected
=> 2-gbit operations cannot be applied to arbitrary pairs of gbits
— Reminder: 2-gbit operations are mandatory in a set of universal operations

= Additional SWAP operations must be performed

= Number of operations of proper algorithms further limited
© Frank Leymann



Decoherence
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Bloch Sphere

For ly)=al0)+pI1) there is a 6E[0, x] and a pE€[0, 2], such that

‘w> = cos% O> + e sing‘ 1>

y)=cos2fo)+e”sin]1) b (6,p)




Decoherence

Ty (relaxation time) - collapse:
Transition into an orthogonal state

T2 (dephasing time) - small disturbance:
Random change of phase
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Non-Applicability of
Classical Error Correction

Redundant codes (copies of gbits) cannot be created: No-Cloning!

A gbit will not change 1n a discrete manner (0 to 1, 1 to 0), but the amplitudes
of superposition can be changed arbitrarily: Continuous Errors!

Reading means measurement, but this destroys the state, 1.e. recovery of the
original state 1s impossible: Destructive Reads!
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Physical/Logical Qbits

Encoding I gbit by 9 gbits allows to detect and correct any (bit single) error!
(|000)+|111})-(|000) +|111))-(|000) +|111))

0) > o~
e (|000)—|111))-(|000)|111))-(|000)~|111))
2\2

...and other encodings are possible. But:

Multiple noisy "physical" gbits needed to realize 1 stable "logical" gbit!

© Frank Leymann



Error Correction of Qbits

"Noise"
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Error Correction (EC)
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Gate Fidelity
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1-Qbit Operators:
Decomposition

A set Z of 1-gbit operators is called universal : <
Each 1-gbit operator is a finite combination of operators from 7

Let U be a 1-gbit operator. Then:

do,B,y,0eR: U= ei“RZ(,B)Ry(y)RZ(é)

© Frank Leymann
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Gates are Inherent Imprecise

R (6) 1s rotation by angle 0 around x-axis

Exact rotation around an angle 1s in
general impossible

=> Rotation 1s inherent imprecise

= Each gbit operation U = ¢"“R_(f) R, (y) R.(5) has a small error

© Frank Leymann
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Gate Errors

Applying the algorithm U, o --- o U, to ¢o results in ¢r:

‘¢T>: U, o...oUl‘g00>

Each operation Ui 1s a bit imprecise, produces a small deviation
from the exact result, 1.e. instead of U; an operation Uj is performed:

Thus, instead of |¢,)=U,|@,) the result U,|p,)=|@,)+| E,) is produced
(Gate Error or [lack of] Gate Fidelity)

I.e. the final computed result of the algorithm is:

l
l

E, )+U,U, |E, )+..+U

T~ T-1

|¢T>:|¢T>+‘ET>+UT
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Error Propagation

@) =loa) | < I1ED [ 2N fl+ -+ [E

Let € be the maximum error of all gates: V 1<t<T: H (ﬁt—Ut) HSE

= [[6,)-lo,) | < 72

The accumulated error grows linear with the length of the computation

© Frank Leymann
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Threshold Theorem

For any required precision of a computation C of a set of 1deal gates,
there is an implementation C’ based on fault tolerant gates that
computes the results of C within the required precision...

...1f the fault tolerant gates fail less than a threshold n-times

Today™ (2019), n=10-2
| = Fault tolerance scales - in principle! ﬂ

Noisy Intermediate Scale Quantum computing: NISQ

© Frank Leymann *) https://en.wikipedia.org/wiki/Quantum_threshold theorem 14



Fault-Tolerance: Principle

Block,
physical Qbits

Qbit

1

1 Qbit 1s encoded by
k error-correcting Qbits

L
)L 1Y " Universal gate G is substituted
NExampleM by a coded gate G’
— —  (coded gate G’ ist quantum subroutine
1L — G = implementing the functionality of G)
EC = — - :

T[ —— DG EC = After executing a coded gate, error
X — -

© Frank Leymann

EC

correction on affected blocks are run
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Implication of Noise

N noisy "physical" gbits are needed to realize 1 stable "logical" gbit!

- = More gbits needed than estimated by theoretical algorithmsﬂ

|

Single universal but noisy gate is realized by quantum subroutine!

Error correction on noisy gbit is run periodically!

- = More operations needed than estimated by theoretical algorithmsﬂ

L

© Frank Leymann
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Metrics of an Algorithm
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Depth and Width
of an Algorithm

The depth of a quantum circuit 1s the number of layers of
1- or 2-gbit gates that operate in parallel on disjoint gbits.

---------------------------

Ga21
G G
G2
Ga2
Gir G222
Gl4 (}23

---------------------------

The width of a quantum circuit 1s the number of manipulated gbits.

© Frank Leymann
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Examples

pmmmmm- Lommmmms Lommmms . G gmmmme- Jemmmms . Depth(G) =2
' 1 ' T ¥ — Width(G) =7

-----------------------------------

Depth(G*) =3
S Hb—@ Width(G’) =3

A
V
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Noisy Algorithms

L]

Error! Error!

Rough estimation of the "size" of a quantum algorithm
that can be performed without errors:

wd <<l

E
w: width
d: depth

€. error rate
© Frank Leymann
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Consequences

1
wd K —

E

Deep quantum algorithms = few qbits
=> efficient classical simulation possible

Shallow quantum algorithms = many qgbits
=> potential for quantum advantage
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Transpilation
(a.k.a. Cross-Compilation)
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Original circuit

arel loy — X —H

ql1] |o) +

cl

Original circuit

OPENQASM 2.0;

include "gelibl.inc";

qreg ql2];
creg c[1];

x qlO];
h q[0];
cx q[0],q[1];

measure q[0] -> c[0];

© Frank Leymann

Transpilation:
Mapping to Hardware Gates

Transpiled circuit

qle] |o) !EEi Iiﬂi

q[1] |o) +

ql2] [o)
ql3]1 |0)

Transpiled circuit

OPENQASM 2.0;

include "qelibl.inc";

qreg ql5];
creg c[1];

u3(1.5707963267948968, 3.141592653589793, 3.141592653589793) q[0];
cx q[0], ql[1];

measure q[0] -> c[0];
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Transpilation:
Increasing Depth

Original circuit Transpiled circuit

q[e] |o) ' I qfel o) ﬂ
aal 1o —JHN a1l |o)

raete éte,

q[3] |0) —— Transpiled circuit

c3

1 OPENQASM 2.0;
q[4] o) ——

.. . . include "gelibl.inc";
Original circuit a

1 OPENQASM 2.0; c3 —— 4 qreg q[5];

2 include "gelibl.inc"; 5 creg c[3];

4 qreg ql[3]; 7 u2(0, 3.141592653589793) q[0];
5  creg c[3]; 8  u2(0, 3.141592653589793) q[1];
6 9 cx qloe], ql[1];

/ h qlo]; 10 cx q[1], q[0];

8 h ql1]; 11 cx q[0], q[1];

9 h ql[2]; 12 u2(0, 3.141592653589793) q[2];
10 cx ql0],ql2]; 13 cx ql[l1], ql[2];
11 cx q[1],q[2]; 14 cx qlo], ql1];

15 cx ql[1], ql[0];
16 cx qlo0], ql1];

17 (11, ql2]1;
© Frank Leymann e ! 24



Transpilation:
Decreasing Depth

Original circuit Transpiled circuit

q[0] |0) X H X qfe] [0) L



Transpilation

...on simulator

Original circuit Transpiled circuit
afo1 o) El afol o) El
SR RY B8 cH g T al1] lo) —
cl cl
...on QPU
Original circuit Transpiled circuit
afol o) = afo1 o)
ql1] |o) (532’2) cHegm T q[1] |o0)
c1 ql2] |o)
ql31 |0)
ql4] |0)

cl




Circuit Rewrite: Implications

The depth of a circuit can often be reduced by
"shifting gates to the left as far as possible",
1.e. without sacrificing the data flow.
This 1s mainly hardware independent.

Hardware dependent rewrite 1s required,
e.g. to map the gates of a hardware-independent circuit
to the gates supported by the concrete hardware.
This typically increases the depth of an algorithm (but may decrease it).
=> Inspection of transpiled circuit needed to assess executability.

© Frank Leymann
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Input Preparation
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Reminder:
Quantum Algorithm

State
Preparation

..........................................

Unitary
Transformation

—> Measurement

..........................................
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Quantum Algorithm: Paper Version

Quantum
Algorithm

© Frank Leymann 30



Data for the Algorithm

‘ We also need an efficient procedure to prepare |b). |

Data as Unitar
Quantum |—> y'
Transformation
State
Data Points™
(Vectors) | % “QUBOs
Caté oricalx‘u,,.‘.
Set of Vectors g
i Data <o
Matrices

© Frank Leymann
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Data as Quantum State

State

Preparation

Unitary
Transformation

32



State Preparation

Various possibilities (each with pros and cons), e.g.:

Basis Encoding
Amplitude Encoding

Tensor product encoding

Schmidt encoding

Corresponds to two categories

Digital encoding

...for performing arithmetics

Analog encoding

...for processing in high-dimensional feature spaces
© Frank Leymann
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Basis Encoding

LetxEN
Then, x will be binary encoded, i.e. (x1,...,xn) € {0,1}n with Xxi2k =x
X b [X1,...,Xn) 18 called Basis Encoding of x €N

Base encoding is a representative of digital encodings

© Frank Leymann
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Basis Encoding: Circuit

Resources for encoding n bits:

0) —— Xb1— |b1) n gbits

n gates

depth 1

|O> - an — |bn>

0 ancillae

Obviously, this circuit can be generated 1n a preprocessing step:

X @ - @ XP|0---0)

© Frank Leymann 35



Basis Encoding:
Real Numbers

A number x € R is approximated in binary representation to k decimal places:

X R ibi2i+ ib_i-i
i=0 i=1 2

4
1
E.g letx=1.7andk=4,ie. x=1-2°4+ ) b_,-—
g. letx an ; >
...next, compute decimal places:

0.7-2=14
04-2=0.8
0.8:2=1.6 B ...1.e. 1.7 approximated to
06-2=12 | 0.710= 10110 4 decimal places: 1 1011

02-2=04

04-2=.. |

© Frank Leymann
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Input Preparation of Real Numbers:
Base Encoding

State Preparation

|0> Xb” |bn>

Preprocessing
Compute binary representation of x

X R ibi2i+ ib_i-i.
i=0 i=1 2

Generate corresponding circuit

© Frank Leymann
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Basis Encoding
of Real Vectors

—0.7
Let x={ 0.1 e R?
0.2

The sign of a number 1s represented by a leading 1 ("—") or 0 ("+")
I.e. (4 decimal places): —0.710=1 10112 +0.110=0 10012 +0.210=0 00112

Thus,

—0.7 11011
x=[ 01 )~ 01011 )~ 11011 01001 00011) = |x)

0.2 00011

© Frank Leymann
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Basis Encoding
of Data Sets

Let D = {x1,...,Xm} be a data set to be processed by a quantum algorithm

, 1 <
Representation of D as a quantum state: | D) = T Z | x;)
m ;—;

Example: x; =|101) and x2 =|011), then |D) = (1101) +]011))

1
2

N
7

I.e. state vectors of binary data sets
are typically sparse vectors

...as a amplitude vector: | D) = —

\/5

SO = O = O OO

-~
N

© Frank Leymann
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Amplitude Encoding

Let x=(x1,...,xn) € RN be a unit-length vector, N =2 (= [xi|<] V1)

Re
X b Xxili) is called amplitude encoding of x € RN R%”' d oy
eglljl‘ed IZS /]O
e, RN
The amplitude encoding is an analog encoding N

For x €RN, N # 2n, use a proper embedding (called padding):

X » (x,0) € RNXRM, (N+M) = 2n, for the smallest possible n

© Frank Leymann
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Amplitude Encoding
of Non-Unit-Length Vectors

For x € RN \{0} the encoding is x Z | i)

IXII

Note: a matrix A € Rn*m can be represented as vector in Rnm

_ dij T
Ay =) A i) 1)

The || . || may be computed classically as preprocessing step

© Frank Leymann
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Normalization and
"Neighborhood"

Normalizing the members set D C RN changes the relation between the members

...which must be considered in certain algorithms (e.g. clustering)

X
® et
—1 y +1
X/||X]]

-1 ST

© Frank Leymann 42



(Tensor) Product Encoding

Let x=(X1,...,xn) € RN be a unit-length vector (= [xi|<I Vi)

Each x; 1s represented by a separate gbit:

Xi P €os X; 0> + sin x; +|1)

R
Then x s (cosx1> © @ <cost> » e%ired

. . oy, |
sin x, Sin X Wi, T,
a[C'S .

N

1s called (tensor) product encoding of x (a.k.a. angle encoding)

Product encoding 1s a representative of an analog encoding

© Frank Leymann

43



Circuit for Product Encoding

SINX COSX

L COS X; COS X,
Thus: . Ry(2xl-) |0---0) = <sinx1> R R <sinxn>

0) — R,(2x) [

R,(2x) = <cosx —sinx> = R,(2x)|0) =cosx-|0) +sinx- 1)

0> —— R,(2%,) ——

0) — R, (2x,) ——

© Frank Leymann



Input Preparation of Real Vectors:
Product Encoding

State Preparation

10) —— Ry(2x1) I

0)— R,(2x) —

0)— R (2x,) —

______________________________________

Preprocessing

| Generate the circuit
<®Ry(2xi)> 10--0)
| i=1

© Frank Leymann
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Schmidt Decomposition

Let x € V® W. There exist ONB {u;j} C V and {v;} € W such that:

K
=1

mit >0 and » A =1.

\Ai are called Schmidt Coefficients of v, K is called Schmidt Number of v
(a.k.a.: Schmidt Rank)

© Frank Leymann
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© Frank Leymann

Schmidt Decomposition via
Singular Value Decomposition

Split the quantum register R into two parts: R=V ® W
Choose ONB {ei} and {fj} for Vand W

Represent x as x = 2 pi-e®f

L,J
Compute the singular value decomposition of M = (Bi;): M = (Ul U2) <13> %

Choose the column vectors of Uy — {ui,...,ux}

Choose the column vectors of V. — {vi,...,vk} A, ULV

A = diag(M,...Ax)

K

i=1

47



State Preparation Based On
Schmidt Decomposition

X = Zﬂij ¢, ®f; ,then SVD: () = (Ul U2) <A> Vi

- 0
l,J

0) — ® —

W= A : \ ¢ U |

8; — AN ® = =B X
0) ¥ v [

0) : + —

Ui, V, A have to be composed of 1-gbit & 2-gbit operations:
— U1:M1®. . .®Mr, V:Mr+1®. . .®Mr+s ) A:Mr+s+1®. . .®Mr+s+t
where each Miis a 1-gbit gate or a CNOT

...and each of the 1-gbit gates 1s represented as rotations:

e (), ()5
© Frank Leymann J ¢ ¢ ﬂj Y yj ¢ J 48



Refinement

v — M;
;: i : MkAT
: .
0 — v ®
O> o : e o o .
0) D
0 P,
0) B
et ) R R0 =

© Frank Leymann

A MM
® Ii :
M: P
Ma_Mb
-9
U M
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Input Preparation of Real Vectors:
Schmidt Decomposition

State Preparation
. .
I A | . ) ¢ I Ul |

—_ _ _ . I__I_
r\ e o o

— — -

| _
, Vo

—

______________________________________

Preprocessing

" Compute A, Uj, V |
" Compute A =@M, U,QM, V=QM,
l i / ¢ l
. Compute M, =e™R_ () R, (7,) R. (8)

. Generate corresponding circuits
© Frank Leymann
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General Proceeding:
Input Preparation

State Preparation

Execute circuit

- Prepra T """"""" |

Preprocessing

Decide encoding
Compute parameter
Generate gates

Generate circuit

51



Implication
of State Preparation

State preparation requires additional operations and additional gbits
as well as classical preprocessing
compared to the "ideal" algorithm.

© Frank Leymann
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Oracle Expansion

© Frank Leymann
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Reminder:
Quantum Algorithm

State Unitary
: : Measurement
Preparation Transformation
Preprocessing Postprocessing —> Result
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Algorithm of Deutsch

o) — n o AR I




Sample Oracle

Letf: {0,1} — {0,1} be the function 0~ 1,1+~ 0

For Udx,y) = |X, y®1(X)) an oracle is:

x) —C x> [X) = - [x)
Us — J; —
ly) — y®f(x) y? N y®f(x)
0 0 0 0 1 1
0o 1 1 0 0 ]

(Note: different f require different Ut!)

© Frank Leymann
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Resulting Circuit

o) — n AR I
Us
1) H
‘ (Oracle Expansion)
0y — H X X 4 H A— ©
1> - H - y®1(x))
Us
© Frank Leymann " TTTTToTooooooooooo
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Algorithm of Shor

0
0 i 2a Classical
S : Post-Processing
. QFT . (continued
0 q A fractions)
Us
0>
0y

...computing f(x) =a*mod n (— multiplication, addition,...)

© Frank Leymann



Addition

___________________ 2 Sn
X1) 9 : ——

x2) ——9- 5i T X
oy > o

Y1 f : AL —
|Yn—l>_ QFT : i. Rp-1 1 i : QFT — |y
[ynH 1 Z QRaf " Ra] — —

1 O
Ry = 0 o2l (and Ry = 2)

Time complexity: O(n2)

© Frank Leymann
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QFT

Sn

Sn—l

So

S1

U

- - e e - e - e e e e - e e e e - e o = e o

_ & —e

I |

! T

L - -} — - — - — Fo-mmmm- - - _| IIIIII —

- e -

m o ?

! I

! I

m “

" )

" _

| & ®

D

|2 t

I _ !

— .

B e |

D

! T
N N N N
— (@\] — (e}
= & p< =
> el T
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Multiplication: Sample

le) o 9 l *—o l * o 9o o ¢ ¢ le)
\x2> > 9 o 9 o ¢ H—eo—o—9—9—9¢ T & | xz)
|a) ——et—o D |x)
‘x0> ? |xo>
|4:®)) @
#5 (b -+ ax))
rxe) )
|4,(b+0x))
|4,®)) )
= 16,6+ ax)
|6,®)—e )
e 16,(b+ax))
|,(B)) —— (30 )
= 16,6+ m))
|6, (&) —79) W)
- = |8, (b+ax))
Timesteps
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Computation of b+ax, a: 3-bit constant, x. 3 gbit, b 6 gbit

© Frank Leymann
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Shor Circuit;:

Summary (




Implication
of Oracle Expansion

Oracle expansion requires additional operations (and additional gbits)
compared to the "ideal" algorithm.

© Frank Leymann
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Connectivity

© Frank Leymann
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Reminder:
Quantum Algorithm

State Unitary
: : Measurement
Preparation Transformation
Preprocessing Postprocessing —> Result
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CNOT
(Controlled Not)

X ® X
y N, X®Dy
CNOT Gate

@0 1
00 1
1110

If x=1 then y will be negated; otherwise, y 1s not changed at all

(x 1s called control-qgbit, y 1s called rarget-gbit)

The set of 1-gbit Operators and CNOT 1s universal.

© Frank Leymann
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Hardware Restrictions

© Frank Leymann

2-qbit operator on two gbits requires connection between them

Can not be
immediately applied

Can be immediately applied

= Connectivity of a quantum chip 1s important

67



Hardware: Connectivity

https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/

http://docs.rigetti.com/en/1.9/_images/acorn.png
© Frank Leymann
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Swap Operator

SWAP : HOH — H® H

00) | 00)
01)+->|10)
10) >|01)
11)-|11)

I.e. both input gbits are exchanged

SWAP Gate

© Frank Leymann
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Example:
Considering Topology

Logical Algorithm
b1 ® P b l l bs
b2 C) Ry —@— b2 P—x @ /4 A A b1
b3 ? \% bs Jé T Rx J_ b>
b4 <> b4 () b4

_I_

Q @ @ Physical Algorithm

Topology Graph bi R bs

Initially, bi » qi

o o :
("gbit allocation") bs £ T é T R, T b

—  bs + ba

© Frank Leymann 70



Example:
Variation-Aware Qbit Movement

Typically, 2-gbit operations along different connections have different success rate

Annotation s;j on the edge {qi,qj} denotes the success rate of a 2-gbit operation
involving gbit q; and g

Scenario: a 2-gbit operation Q 1s to be performed on qi, g3

Swapping qs — q2, followed by €2(qi1,q2) has success rate
0.3x0.5=0.15

Swapping q3 — g4 — qs — 6 — q7 — (s followed by
€Q(q1,q8) has success rate 0.8x0.8%0.9x0.9x0.7x0.9 = 0.33

=> Using a single SWAP followed by Q has a lower
Topology Graph success rate than using 5 SWAPs followed by 2

=> Success rate of gbit connections influences the number of SWAPs performed
as well as error rates of 2-qbit operations

Even worse, the success rate changes over time!

© Frank Leymann 71



Example:
Variation-Aware Qbit Allocation

The gbits of the quantum circuit must be assigned to physical gbits of the QPU
This is an initial allocation that changes during the execution
The goal 1s to improve reliability of the computation

Naive allocation selects any subgraph to minimizes SWAPs

Considering success rate of connections determines connected subgraph
with maximum weights

In the example: QO0, Q1, Q2 » qs, gs, q7

Mapping | Weight
qreg Q[3]; qi, q2, 3 0.15
creg CI[3]; qQz, q3, 4 0.24
x Q[0]; q3, g4, qs | 0.64
cx Q[O0],Q[1];
cx Q[2],0Q[1]; , 6, 0.81
measure Q[1] -> C[1]; 46 q7 4
q7,qs, q1 | 0.63
© Frank Leymann



Implication of Connectivity

The connectivity of a QPU implies
the injection of additional (SWAP) operations
into the "ideal" algorithm.

The success rate of gbit connections influence the number of SWAPs
as well as the error rate of 2-gbit operations

Considering the success rate of gbit connections
as well as error rate of 1-gbit operations
during gbit allocation of a quantum circuit
influences the reliability of its execution

© Frank Leymann
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Readout Errors

© Frank Leymann
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Reminder:

Quantum Algorithm

State
Preparation

..........................................

Unitary
Transformation

>» Measurement

..........................................

Result
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Readout Errors

Duration of a measurement 1s significantly larger than decoherence time

=> a gbit under measurement may relax during this time
(e.g. flip from |1) to |0) in between)

Thus, readout errors correspond to
disturbed probability distributions of measured results

© Frank Leymann



Principle:
Correcting Readout Errors

Unfolding: Reconstruction of a true "undisturbed" distribution
out of a measured "disturbed" distribution

Let t be the true distribution, m be the measured distribution — t, m € Nk —
where k 1s the number of values, and t;, m; € N is the count of the i-th value

t, m are related by a calibration matrix® C: t=C-m t Count
with Cj; = Prob( measured value =j | true = 1)

Correcting readout errors means
determining the calibration matrix C
(unfolding method) >
) ) Value
t: m:
*) a.k.a. response matrix 78

© Frank Leymann



Constructing
the Calibration Matrix

Co i Ci i C2 1 Ck o Ch-1
‘O> Al o IxHA o Ay o IxHAL o xHA
0 A : 0 A :\0>—X—4§ :: 0> — X HA :: 0y - X H.A
: S N S S :
0 A : 0 A :\o> A : :|o> A: :|o>—x—4<

Construct and measure each element of the computational basis [1)€{0,1 }n
I.e. use the above so-called calibration circuits Ci, 0<i<n—1

Applying circuit C; should result 1n [1], but result [j] 1s readout error

Ci is performed M times
If [j] results K times, then Cj; = K\M

=> Cjj = Prob( measured value = j | true = 1)
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Implication
of Readout Errors

Correcting readout errors requires additional operations
(namely the calibration circuits)
to determine the calibration matrix regularly
(fortunately not for every execution of the "ideal" algorithm)

Correcting readout errors requires classical post-processing,
1.e. applying the calibration matrix to the measured results

© Frank Leymann
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Readout Errors:
Periodic processing

Prepare 10...0) Execute Cs Measure Is)
. Preprocessing . Postprocessing .
i s>=|bob1...ba-1> € {0,1}n | . 0<s<2n]
' Generate circuit l - C=(Cy)
C=X"Q® .- ®@Xw1 . Store C
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Readout Errors:
Postprocessing

Readout

Unfolding: —>f

txC-m=1

83
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NISQ Analyzer
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NISQ Assessment

© Frank Leymann

Execution

NISQ Analyzer :> possible:

Depth? Width?

H Y { m

Error bound &

H Y { m
QC,

NISQ Analyzer :> OC, or QC,?




Provenance: Definition

Definition
Information describing a process, computation, or data

Goals: reproducibility, understandability, quality

Importance for QC
Noisy machines (decoherence, gate infidelity,...)

Very different hardware implementations
(superconducting, trapped 1on, optical, ...)

© Frank Leymann
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Provenance: Categories

—(m

— Used gates, depth,...

O O
U2

U3

CX| |...

Available gates, topology,...

) — X H
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\n SPAM Errors
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Provenance Usage

Aggregator
Algorithm e

Device

Calibration|Matrix,...

Analyzer > - < Collector
Depth, Provenance Evoe A
Gates,... DEIELERE  Gates,. . .
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Hardware Dependent
Operations

Set of basic operators i1s hardware implementation dependent
E.g. continuous-variable (CV) operations in optical quantum computers

Squeezing, FockState,... in PennyLane

E.g. different sets of basic operators implemented by vendors of same
category of hardware implementation

E.g. Ul, U2, U3,... on IBM Q; or Rx(x/2), CZ,... on Rigetti; ...

Thus, NISQ compiler must even be aware of implementation of hardware

© Frank Leymann
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NISQ Rewriting

X H Y [ M —

Translator

Forest QISKit
Plugin Plugin
Modeling Tool
Project Q
Plugin

© Frank Leymann

IBMQ 16 Melbourne
(15 Qubits)

&

QISKit
(IBM)

pyQuil
(Rigetti)

WV

Agave
(8 Qubit)
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Quantum Algorithm

Input

Data Prepatration

Rewriting Stages

Data Preparation
Inject circuit that initializes input state

Oracle Expansion
Inject circuit of oracle logic

Gate Mapping
Substitute gates by circuit of vendor supported
gates

Metrics

QPy,
Qru,
QPU,

E.g. decoherence time (T1, T2), gate fidelity,...

QPu,,

Metrics

QPU; = {iy, Hygy e
QPUZ_'{HM; “221 e

QPUN_’{“Nll MNZI e

}
}

}

Execution Readiness

QPU, = ¥ - Recommendation

U~ X Recommentation:
LA Deploy on QPU,; QPU;3
QU -~ X
Readout Error Mitigation Calibration Matrix
I—> Preparation 1.02105263  —0.03157895
> [—0.02105263 1.03157895
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-1
Mo [0.98 0.03]

0.02 0.97




NISQ Recommender



Final Remarks
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Summary

NISQ is determined by

Decoherence
Gate infidelity
Readout errors
Connectivity

Data preparation 1s another problem
Measurement yet another one

All these problems can be addressed...
...but require additional gates and gbits

Thus, resources available for proper algorithm i1s further reduced

NISQ Analyzer (Rewriter, Recommender,...) will be a tool that helps to
determine best QPU to be used for solving a problem based on a given
algorithm and given data under constraints like cost, precision,...
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The End



