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Technological Problems
Decoherence : Qbits are not stable 

⇒ State of a qbit decays over time (often, rather quick!) 
→ Implementation of qbits disturb each other 
⇒ Increasing number of qbits is quite difficult

Gate Infidelity : Each operation is (a bit) imprecise 
⇒ Error of an algorithm increases with number of opertions 
⇒ Only algorithms with "few" operations can be executed precisely 

Qbit Connectivity : Not all qbits are physically connected  
⇒ 2-qbit operations cannot be applied to arbitrary pairs of qbits 
→ Reminder: 2-qbit operations are mandatory in a set of universal operations  

⇒ Additional SWAP operations must be performed 
⇒ Number of operations of proper algorithms further limited

Readout Error: Measurement of a qbit is imprecise  
⇒ Results are distorted
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Decoherence
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Bloch Sphere
 

For |𝜓⟩=α|0⟩+β|1⟩ there is a θ∈[0, 𝜋] and a ρ∈[0, 2𝜋], such that

ψ = cosθ
2
0 + eiρ sinθ

2
1

ψθ

ρ
ψ = cos

θ
2

0 + eiρ sin
θ
2

1  !  θ ,ρ( )
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Decoherence

T1 (relaxation time) - collapse: 
Transition into an orthogonal state

T2 (dephasing time) - small disturbance: 
Random change of phase

5
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Non-Applicability of 
Classical Error Correction

Redundant codes (copies of qbits) cannot be created: No-Cloning!

A qbit will not change in a discrete manner (0 to 1, 1 to 0), but the amplitudes 
of superposition can be changed arbitrarily: Continuous Errors!

Reading means measurement, but this destroys the state, i.e. recovery of the 
original state is impossible: Destructive Reads!

6
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Physical/Logical Qbits
Encoding 1 qbit by 9 qbits allows to detect and correct any (bit single) error!

0 !
000 + 111( ) ⋅ 000 + 111( ) ⋅ 000 + 111( )

2 2

1 !
000 − 111( ) ⋅ 000 − 111( ) ⋅ 000 − 111( )

2 2

Multiple noisy "physical" qbits needed to realize 1 stable "logical" qbit!

…and other encodings are possible. But:

7
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Error Correction of Qbits

|𝜓⟩
|0⟩
|0⟩

|0⟩

|0⟩

Encoding Syndrom 
Recognition

Recovery

Error Correction (EC)

"Noise"

8
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Gate Fidelity
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1-Qbit Operators: 
Decomposition

A set U of 1-qbit operators is called universal :⇔  
Each 1-qbit operator is a finite combination of operators from U 

∃ α ,β ,γ ,δ ∈! :  U = eiαRz β( )Ry γ( )Rz δ( )
Let U be a 1-qbit operator. Then:

10
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Gates are Inherent Imprecise

θ

Rx θ( )ψ

ψ

x

Rx θ( )           is rotation by angle θ around x-axis

Exact rotation around an angle is in 
general impossible

⇒ Rotation is inherent imprecise

U = eiαRz (β) Ry (γ) Rz (δ)⇒ Each qbit operation                                              has a small error

Rx (θ)

11
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Gate Errors

ϕT =UT ! ...!U1 ϕ0

Each operation Ui is a bit imprecise, produces a small deviation  
from the exact result, i.e. instead of Ui an operation Ui is performed:  ∼

ϕ1 =U1 ϕ0Thus, instead of the result !U1 ϕ0 = ϕ1 + E1 is produced

(Gate Error or [lack of] Gate Fidelity)

!ϕT = ϕT + ET + !UT ET−1 + !UT
!UT−1 ET−2 + ...+ !UT

!UT−1... !U2 E1

I.e. the final computed result of the algorithm is:

Applying the algorithm to 𝜑0 results in 𝜑T:UT ∘ ⋯ ∘ U1

12
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Error Propagation
  !ϕT − ϕT   ≤   ET  +  ET−1 +  ET−2 + ...+  E1

Let ε be the maximum error of all gates :  ∀ 1≤ t ≤ T:  !Ut −Ut( )  ≤ ε

⇒   !ϕT − ϕT   ≤  Tε

 The accumulated error grows linear with the length of the computation

13
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Noisy Intermediate Scale Quantum computing: NISQ

 

Threshold Theorem
For any required precision of a computation C of a set of ideal gates, 
there is an implementation C’ based on fault tolerant gates that 
computes the results of C within the required precision…

⇒ Fault tolerance scales - in principle!

…if the fault tolerant gates fail less than a threshold η-times

Today(*) (2019), η≈10-2

(*) https://en.wikipedia.org/wiki/Quantum_threshold_theorem 14
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Fault-Tolerance: Principle
1 Qbit is encoded by  
k error-correcting Qbits

1Qbit

k
Block, 

physical Qbits

G

G’

Universal gate G is substituted 
by a coded gate G’ 
(coded gate G’ ist quantum subroutine 
implementing the functionality of G)

×

×

⎫

⎬
⎪⎪

⎭
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

Example

After executing a coded gate, error 
correction on affected blocks are runG’ EC

×

EC

EC

⎫

⎬
⎪⎪

⎭
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪
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Implication of Noise
N noisy "physical" qbits are needed to realize 1 stable "logical" qbit!

Single universal but noisy gate is realized by quantum subroutine!

Error correction on noisy qbit is run periodically!

⇒ More qbits needed than estimated by theoretical algorithms

⇒ More operations needed than estimated by theoretical algorithms

16
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Metrics of an Algorithm

17
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Depth and Width 
of an Algorithm

The depth of a quantum circuit is the number of layers of 
1- or 2-qbit gates that operate in parallel on disjoint qbits.

G11

G12

G13

G14

G21

G22

G23

G32

G31

The width of a quantum circuit is the number of manipulated qbits.
18
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Examples

 

 

 

 

 

 

 

 

 

G

 

Depth(G) = 2
Width(G) = 7

TH

S

H

G’

Depth(G’) = 3
Width(G’) = 3

TH

S

H
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Noisy Algorithms

 

 

 

  

 
  

 

 
 

Error! Error!

w: width 
d: depth 
ε:  error rate

Rough estimation of the "size" of a quantum algorithm 
that can be performed without errors:

wd ≪ 1
ε

20
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Consequences

Deep quantum algorithms ⇒ few qbits  
⇒ efficient classical simulation possible

wd ≪ 1
ε

Shallow quantum algorithms ⇒ many qbits  
⇒ potential for quantum advantage

21
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Transpilation 
(a.k.a. Cross-Compilation)
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Transpilation: 
Mapping to Hardware Gates

23
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Transpilation: 
Increasing Depth
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Transpilation: 
Decreasing Depth

25
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Transpilation

26

…on simulator

…on QPU
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Circuit Rewrite: Implications
The depth of a circuit can often be reduced by 
"shifting gates to the left as far as possible", 

i.e. without sacrificing the data flow. 
This is mainly hardware independent.

27

Hardware dependent rewrite is required, 
e.g. to map the gates of a hardware-independent circuit 

to the gates supported by the concrete hardware. 
This typically increases the depth of an algorithm (but may decrease it).
⇒ Inspection of transpiled circuit needed to assess executability.
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Input Preparation
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Reminder: 
Quantum Algorithm

Unitary 
Transformation Measurement

Result

State 
Preparation

Preprocessing Postprocessing

29
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Quantum Algorithm: Paper Version

30

Quantum 
Algorithm   Paper   

   Math   

   Circuit   
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Data for the Algorithm

31

Unitary 
Transformation

Data as 
Quantum 

State

Data Points 
(Vectors)

Set of  Vectors Categorical 
Data

QUBOs

Matrices
…

   Assumption
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Data as Quantum State

32

Unitary 
Transformation

State 
Preparation

Classical 
Pre- 

Processing

(x1, . . . , xN) ↦ (cos x1

sin x1) ⊗ ⋯ ⊗ (cos xN

sin xN)
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State Preparation
Various possibilities (each with pros and cons), e.g.:

Basis Encoding

Amplitude Encoding

Tensor product encoding

Corresponds to two categories

Digital encoding
…for performing arithmetics

33

Schmidt encoding

Analog encoding
…for processing in high-dimensional feature spaces
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Basis Encoding
Let x ∈ ℕ

Then, x will be binary encoded, i.e. (x1,…,xn) ∈ {0,1}n with Σxk2k = x

x ↦ |x1,…,xn⟩ is called Basis Encoding of x ∈ ℕ 

Base encoding is a representative of digital encodings

34
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Basis Encoding: Circuit

n qbits

n gates

depth 1

0 ancillae

Resources for encoding n bits:

35

Obviously, this circuit can be generated in a preprocessing step:

Xb1 ⊗ ⋯ ⊗ Xbn |0⋯0⟩

|0⟩ |b1⟩

|0⟩ |bn⟩

…
Xb1

Xbn
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Basis Encoding:  
Real Numbers

A number x ∈ ℝ is approximated in binary representation to k decimal places:

x ≈
n

∑
i=0

bi2i +
k

∑
i=1

b−i ⋅
1
2i

E.g. let x=1.7 and k=4, i.e. x = 1 ⋅ 20 +
4

∑
i=1

b−i ⋅
1
2i

…next, compute decimal places: 

0.7 · 2 = 1.4   
0.4 · 2 = 0.8  
0.8 · 2 = 1.6   
0.6 · 2 = 1.2  
0.2 · 2 = 0.4      
0.4 · 2 = …   

0.710 = 101102
…i.e. 1.7 approximated to 
4 decimal places: 1 1011

…
pe

rio
di

c…

36
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Input Preparation of Real Numbers: 
Base Encoding

Preprocessing
Compute binary representation of x

x ≈
n

∑
i=0

bi2i +
k

∑
i=1

b−i ⋅
1
2i

Generate corresponding circuit

Xbn ⊗ ⋯ ⊗ Xb−k |0⋯0⟩

State Preparation

|0⟩ |bn⟩

|0⟩ |b−k⟩

…

Xbn

Xb−k

(Note: signs w.l.o.g. 
not considered)

37
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Basis Encoding 
of Real Vectors

The sign of a number is represented by a leading 1 ("−") or 0 ("+")

I.e. (4 decimal places): −0.710 = 1 10112 +0.110 = 0 10012 +0.210 = 0 00112

Thus, 

x = (
−0.7
0.1
0.2 ) ↦ (

11011
01011
00011) ↦ |11011 01001 00011⟩ = |x⟩

x = (
−0.7
0.1
0.2 ) ∈ ℝ3Let

(It’s obvious how to generalize the preparation method for real numbers 
in base encoding to real vectors in base encoding)

38
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Basis Encoding 
of Data Sets

Let D = {x1,…,xm} be a data set to be processed by a quantum algorithm

Representation of D as a quantum state: |D⟩ =
1

m

m

∑
i=1

|xi⟩

Example:  x1 = |101⟩ and x2 = |011⟩, then  |D⟩ =
1

2
( |101⟩ + |011⟩)

|D⟩ =
1

2

0
0
0
1
0
1
0
0

…as a amplitude vector: I.e. state vectors of binary data sets 
are typically sparse vectors

39
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Amplitude Encoding

x ↦ Σxi|i⟩ is called amplitude encoding of x ∈ ℝN 

Let x=(x1,…,xN) ∈ ℝN be a unit-length vector, N = 2n  (⇒ |xi|≤1 ∀i)  

The amplitude encoding is an analog encoding

40

For x ∈ ℝN , N ≠ 2n, use a proper embedding (called padding): 

x ↦ (x,0) ∈ ℝN×ℝM, (N+M) = 2n, for the smallest possible n

Required qubits:⌈ log2 N⌉
Required gates: 4N
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Amplitude Encoding 
of Non-Unit-Length Vectors

x ↦ ∑
xi

x
| i⟩For x ∈ ℝN \{0} the encoding is

41

Note: a matrix A ∈ ℝn×m can be represented as vector in ℝnm

|A⟩ = ∑
aij

A
| i⟩ | j⟩

The || . || may be computed classically as preprocessing step
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Normalization and 
"Neighborhood"

Normalizing the members set D ⊆ ℝN changes the relation between the members 

…which must be considered in certain algorithms (e.g. clustering)

o
+1−1

x
y

42

o
+1−1

x’ y’

o
+1−1

x/||x||
y/||y||
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(Tensor) Product Encoding

Each xi is represented by a separate qbit:

xi ↦ cos xi ·|0⟩ + sin xi ·|1⟩ 

x ↦ (cos x1

sin x1) ⊗ ⋯ ⊗ (cos xN

sin xN)Then,

is called (tensor) product encoding of x (a.k.a. angle encoding)

Product encoding is a representative of an analog encoding

43

Required qubits: N
Required gates: N

Let x=(x1,…,xN) ∈ ℝN be a unit-length vector (⇒ |xi|≤1 ∀i)  
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Circuit for Product Encoding

Ry (2x) = (cos x −sin x
sin x cos x ) ⇒ Ry (2x) |0⟩ = cos x ⋅ |0⟩ + sin x ⋅ |1⟩

Thus: (
n

⨂
i=1

Ry(2xi)) |0⋯0⟩ = (cos x1

sin x1) ⊗ ⋯ ⊗ (cos xn

sin xn)

|0⟩

|0⟩

|0⟩

Ry(2x1)

Ry(2x2)

Ry(2xn)

…

44
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Input Preparation of Real Vectors: 
Product Encoding

Preprocessing

State Preparation

Generate the circuit 

(
n

⨂
i=1

Ry(2xi)) |0⋯0⟩

|0⟩

|0⟩

|0⟩

Ry(2x1)

Ry(2x2)

Ry(2xn)

…

45
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Schmidt Decomposition

46

λi are called Schmidt Coefficients of v, K is called Schmidt Number of v 
(a.k.a.: Schmidt Rank)

Let x ∈ V ⊗ W. There exist ONB {uj} ⊆ V and {vj} ⊆ W such that:  

mit λi>0 and              . λi = 1∑

x =
K

∑
i=1

λi ⋅ ui ⊗ vi
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Schmidt Decomposition via 
Singular Value Decomposition

Choose ONB {ei} and {fj} for V and W 

Represent x as x = ∑
i,j

βij ⋅ ei ⊗ fj

Split the quantum register R into two parts:  R = V ⊗ W 

Compute the singular value decomposition of M = (βij): M = (U1 U2) (A
0) V*

Choose the column vectors of U1 → {u1,…,uK}

Choose the column vectors of V → {v1,…,vK}

A = diag(λ1,…λK)

⇒ x =
K

∑
i=1

λi ⋅ ui ⊗ vi

}A, U1, V

47
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…and each of the 1-qbit gates is represented as rotations:
Mj = eiαjRz (βj) Ry (γj) Rz (δj)

(βij) = (U1 U2) (A
0) V*x = ∑

i,j

βij ⋅ ei ⊗ fi , then SVD:

State Preparation Based On 
Schmidt Decomposition 

48

…
…

A
…

U1

V

|0⟩
|0⟩

|0⟩
|0⟩
|0⟩

|0⟩

}|x⟩

U1, V, A have to be composed of 1-qbit & 2-qbit operations:
→ U1=M1⊗…⊗Mr, V=Mr+1⊗…⊗Mr+s ,   A=Mr+s+1⊗…⊗Mr+s+t

where each Mi is a 1-qbit gate or a CNOT
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Refinement

…
…

A
…

U1

V

|0⟩
|0⟩

|0⟩
|0⟩
|0⟩

|0⟩

}|x⟩

…
Mj

Mk

Mi …

Mr

Ms

…

Ma

Mc

Mb

eiαjI Rz (βj) Rz (δj)Ry (γj)

49



© Frank Leymann

State Preparation

…
…

A
…

U1

V

Input Preparation of Real Vectors: 
Schmidt  Decomposition

Preprocessing

Compute A, U1, V

Compute A = ⨂
i

Mi, U1⨂
j

Mj, V = ⨂
k

Mk

Ml = eiαlRz (βl) Ry (γl) Rz (δl)Compute

Generate corresponding circuits
50
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General Proceeding: 
Input Preparation

Preprocessing
Decide encoding
Compute parameter
Generate gates
Generate circuit

State Preparation

Execute circuit Unitary 
Transformation Measurement

Postprocessing

51
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Implication 
of State Preparation

State preparation requires additional operations and additional qbits
as well as classical preprocessing 

compared to the "ideal" algorithm.

52
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Oracle Expansion
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Reminder: 
Quantum Algorithm

Unitary 
Transformation Measurement

Result

State 
Preparation

Preprocessing Postprocessing

54



© Frank Leymann

Algorithm of Deutsch

55

H

H
Uf

H x0

1
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Sample Oracle

56

Let f : {0,1} → {0,1} be the function  0 ↦ 1, 1 ↦ 0

For Uf|x,y⟩ = |x, y⊕f(x)⟩ an oracle is: 

0 
0 → 0  

1
0 
1 → 0 

0
1 
0 → 1 

0
1 
1 → 1 

1

|x⟩

|y⟩

|x⟩

|y⊕f(x)⟩
Uf ≡

|x⟩

|y⟩

|x⟩

|y⊕f(x)⟩

X

≡
X

(Note: different f require different Uf!)
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Resulting Circuit
H

H
Uf

H x0

1

(Oracle Expansion)

|0⟩

|1⟩

|x⟩

|y⊕f(x)⟩

H

H

H

Uf

X X

57
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Algorithm of Shor

58

|0⟩

|0⟩

|0⟩

|0⟩

H

H

⋮

⋮
Uf

QFT ⋮

⋮

Classical 
Post-Processing 

(continued 
fractions)

…computing  f(x) = ax mod n (→ multiplication, addition,…)
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Addition
|x1⟩

⋮
|x2⟩

|xn⟩

|y1⟩

|yn⟩

|yn-1⟩

R2 RnZ ⋯

QFT Rn-1Z ⋯

Z⋯

QFT-1

}
}

|x⟩

|y+x⟩

S1 S2 Sn

! !
Rk = (1 0

0 e2πi/2k) (and R0 = Z)

Time complexity: O(n2)

(Depth of the circuit can be 
significantly reduced, e.g. 
ZC of S2 can run in parallel 
to ZC of S1 etc…) 

https://arxiv.org/abs/quant-ph/0008033v1 59
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QFT

60

…

…H R2 RnRn-1 …
!

H R2 Rn-2 Rn-1…

… …
…

…

…

…

…

H R2

H

S1 S2 Sn-1 Sn

|xn-1⟩

|xn-2⟩

|x1⟩

|x0⟩
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Multiplication: Sample

61

Computation of b+ax, a: 3-bit constant, x: 3 qbit, b: 6 qbit

http://arxiv.org/abs/1207.0511v5
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Shor Circuit: 
Summary

⋮

62
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Implication 
of Oracle Expansion

Oracle expansion requires additional operations (and additional qbits) 
compared to the "ideal" algorithm.

63
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Connectivity
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Reminder: 
Quantum Algorithm

Unitary 
Transformation Measurement

Result

State 
Preparation

Preprocessing Postprocessing

65
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CNOT 
(Controlled Not)

     0  1
0   0  1 
1   1  0

⊕

If x=1 then y will be negated; otherwise, y is not changed at all
(x is called control-qbit, y is called target-qbit)

CNOT Gate

x

y

x

x⊕y

The set of 1-qbit Operators and CNOT is universal.

66
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Hardware Restrictions

Can be immediately applied

Can not be 
immediately applied

2-qbit operator on two qbits requires connection between them

 ⇒ Connectivity of a quantum chip is important

67
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Hardware: Connectivity

http://docs.rigetti.com/en/1.9/_images/acorn.png

https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/

68
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Swap Operator

I.e. both input qbits are exchanged

SWAP : H⊗H→H⊗H

00 ! 00

01 ! 10

10 ! 01

11 ! 11

SWAP Gate

x

y

y

x

×

×

×
×

≡

69
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Example: 
Considering Topology

Rx

b1

b2

b3

b4

Logical Algorithm

q1 q2 q3

q4

Topology Graph

+
Rx

b1

b2

b3

b4

×
× ×

× b3

b1

b2

b4

b2

b3 b1

b3

Rx

b1

b2

b3

b4

b3

b1

b2

b4

Physical Algorithm

Initially, bi ↦ qi  
("qbit allocation")

70
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Example: 
Variation-Aware Qbit Movement

q1

q2

q3

q5

Topology Graph

q4

q7

q6

q8

0.5

0.3

0.8

0.80.9

0.9

0.7

0.9

0.33
0.15

Typically, 2-qbit operations along different connections have different success rate

Annotation sij on the edge {qi,qj} denotes the success rate of a 2-qbit operation  
involving qbit qi and qj  

Scenario: a 2-qbit operation Ω is to be performed on q1, q3

Swapping q3 → q2, followed by Ω(q1,q2) has success rate 
0.3 × 0.5 = 0.15

Swapping q3 → q4 → q5 → q6 → q7 → q8 followed by  
Ω(q1,q8) has success rate 0.8×0.8×0.9×0.9×0.7×0.9 = 0.33

⇒ Using a single SWAP followed by Ω has a lower 
success rate than using 5 SWAPs followed by Ω

⇒ Success rate of qbit connections influences the number of SWAPs performed 
as well as error rates of 2-qbit operations

Even worse, the success rate changes over time!
71
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Mapping     Weight

q5, q6, q7       0.81

q1, q2, q3       0.15
q2, q3, q4       0.24
q3, q4, q5       0.64

q7, q8, q1       0.63

…

…

Example: 
Variation-Aware Qbit Allocation

The qbits of the quantum circuit must be assigned to physical qbits of the QPU

qreg Q[3]; 
creg C[3]; 

x Q[0]; 
cx Q[0],Q[1]; 
cx Q[2],Q[1]; 
measure Q[1] -> C[1];

q1

q2

q3

q5

q4

q7

q6

q8

0.5

0.3

0.8

0.80.9

0.9

0.7

0.9

This is an initial allocation that changes during the execution 
The goal is to improve reliability of the computation

Naive allocation selects any subgraph to minimizes SWAPs
Considering success rate of connections determines connected subgraph  
with maximum weights

In the example: Q0, Q1, Q2 ↦ q5, q6, q7

72
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Implication of Connectivity
The connectivity of a QPU implies 

the injection of additional (SWAP) operations 
into the "ideal" algorithm.

74

The success rate of qbit connections influence the number of SWAPs
as well as the error rate of 2-qbit operations

Considering the success rate of qbit connections 
as well as error rate of 1-qbit operations  

during qbit allocation of a quantum circuit 
influences the reliability of its execution 
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Readout Errors
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Reminder: 
Quantum Algorithm

Unitary 
Transformation Measurement

Result

State 
Preparation

Preprocessing Postprocessing

76



© Frank Leymann

Readout Errors
Duration of a measurement is significantly larger than decoherence time

⇒ a qbit under measurement may relax during this time 
     (e.g. flip from |1⟩ to |0⟩ in between)

Thus, readout errors correspond to 
disturbed probability distributions of measured results

77
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Let t be the true distribution, m be the measured distribution —  t, m ∈ ℕk  —  
where k is the number of values, and ti, mi ∈ ℕ is the count of the i-th value

Principle: 
Correcting Readout Errors

Unfolding: Reconstruction of a true "undisturbed" distribution  
out of a measured "disturbed" distribution

m: Value

Count

t:

t, m are related by a calibration matrix(*) C:  t = C·m

Correcting readout errors means 
determining the calibration matrix C 

(unfolding method)

with Cij = Prob( measured value = j | true = i)

78(*) a.k.a. response matrix

(several unfolding methods exist, the following is a straightforward one)
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Constructing 
the Calibration Matrix

|0⟩

|0⟩

|0⟩

……

X|0⟩

|0⟩

|0⟩

…… … …
|0⟩

|0⟩

…|0⟩ X…

X|0⟩

|0⟩

|0⟩

…X……

X|0⟩

|0⟩

|0⟩

…X…

X

…

Construct and measure each element of the computational basis |i⟩∈{0,1}n

I.e. use the above so-called calibration circuits Ci, 0≤i≤n−1

Applying circuit Ci should result in [i], but result [j] is readout error

C0 C1 C2 Ck Cn-1

Ci is performed M times
If [j] results K times, then Cij = K\M

[i] :  integer value of |i⟩ 79

⇒ Cij = Prob( measured value = j | true = i)
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X|0⟩

|0⟩

|0⟩

……

C1 C1,0   = 0.03320 
C1,1   = 0.91406 
C1,3   = 0.01172 
C1,5   = 0.00879 
C1,9   = 0.02539 
C1,11  = 0.00098 
C1,13  = 0.00098 
C1,17  = 0.00391 
C1,25  = 0.00098

…all other C1,i = 0
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Implication 
of Readout Errors

Correcting readout errors requires additional operations 
(namely the calibration circuits) 

to determine the calibration matrix regularly 
(fortunately not for every execution of the "ideal" algorithm)

Correcting readout errors requires classical post-processing,
i.e. applying the calibration matrix to the measured results
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Readout Errors: 
Periodic processing

82

Preprocessing

Prepare |0…0⟩ Execute Cs Measure |s⟩

Postprocessing
|s⟩=|b0b1…bn-1⟩ ∈ {0,1}n

Generate circuit

Cs = Xb0 ⊗ ⋯ ⊗ Xbn−1

0 ≤ s ≤ 2n-1
C = (Cs)
Store C
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Readout Errors: 
Postprocessing

83

State 
Preparation

Unitary 
Transformation 

Preprocessing Unfolding: 
t ≈ C ⋅ m = ̂t

Readout 

…

| t⟩

↦ m

̂t
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NISQ Analyzer

84
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NISQ Assessment

Error bound 𝜀 NISQ Analyzer
Execution 
possible: 

Depth? Width? 
…

NISQ Analyzer QC1 or QC2?

QC1 QC2

X H Y m

X H Y m

85
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Provenance: Definition
Definition 

Information describing a process, computation, or data 

Goals: reproducibility, understandability, quality 

Importance for QC 

Noisy machines (decoherence, gate infidelity,…) 

Very different hardware implementations  
(superconducting, trapped ion, optical, …)

86
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Provenance: Categories

X H X m

X H X m|𝜓⟩

Available gates, topology,…U2 CXU3 …

87

SPAM Errors

Used gates, depth,…
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Provenance Usage

88

Algorithm

Analyzer Provenance 
Database

Device

Depth, 
Gates,…

Topology, 
Gates,…

APICollector

Aggregator

Calibration Matrix,…
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Hardware Dependent 
Operations

Set of basic operators is hardware implementation dependent

E.g. continuous-variable (CV) operations in optical quantum computers

Squeezing, FockState,... in PennyLane

Thus, NISQ compiler must even be aware of implementation of hardware

E.g. different sets of basic operators implemented by vendors of same 
category of hardware implementation

E.g. U1, U2, U3,… on IBM Q; or Rx(𝜋/2), CZ,… on Rigetti; …

89



© Frank Leymann

NISQ Rewriting

Modeling Tool

QISKit 
(IBM)

pyQuil 
(Rigetti)

IBMQ_16_Melbourne 
(15 Qubits)

Agave 
(8 Qubit)

Translator

QISKit 
Plugin

Forest 
Plugin

Project Q 
Plugin …

X H Y m
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Rewriting StagesQuantum Algorithm

Input

Readout Error Mitigation 
Preparation

M-1 = [0.98 0.03
0.02 0.97]

-1 [ 1.02105263 −0.03157895
−0.02105263 1.03157895 ]

Calibration Matrix

Execution Readiness
QPU1 → ✓ - Recommendation 

QPU2→ ✗ 

QPU3→ ✓
… 
QPUN→ ✗

Recommentation:  
Deploy on QPU1, QPU3

Metrics
QPU1 →{μ11, μ12, …} 

QPU2→{μ21, μ22, …} 

… 
QPUN→{μN1, μN2, …}

Metrics 
E.g. decoherence time (T1, T2), gate fidelity,…

Data Prepatration Data Preparation 
Inject circuit that initializes input state 

Oracle Expansion

Oracle Expansion 
Inject circuit of oracle logic

QPU1 

QPU2 

QPU3 

… 
QPUN

Gate Mapping

Gate Mapping 
Substitute gates by circuit of vendor supported 
gates
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NISQ Recommender
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Final Remarks
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Summary
NISQ is determined by

Decoherence
Gate infidelity
Readout errors
Connectivity

Data preparation is another problem

All these problems can be addressed…
…but require additional gates and qbits

Thus, resources available for proper algorithm is further reduced

NISQ Analyzer (Rewriter, Recommender,…) will be a tool that helps to  
determine best QPU to be used for solving a problem based on a given 
algorithm and given data under constraints like cost, precision,…

94

Measurement yet another one
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The End


