
Prof. Dr. Dr. h.c. Frank Leymann

Institut für Architektur von Anwendungssystemen (IAAS)
Universität Stuttgart

Kurt Gödel Visiting Professor TU Wien

The Bitter Truth
About Quantum Algorithms

in the NISQ Era
(TU Wien, November 24th, 2021)

Leymann, Frank; Barzen, Johanna: The bitter truth about gate-based quantum algorithms in the NISQ era.
In: Quantum Science and Technology, 2020

© Frank Leymann

Technological Problems
Decoherence : Qbits are not stable

⇒ State of a qbit decays over time (often, rather quick!)
→ Implementation of qbits disturb each other
⇒ Increasing number of qbits is quite difficult

Gate Infidelity : Each operation is (a bit) imprecise
⇒ Error of an algorithm increases with number of opertions
⇒ Only algorithms with "few" operations can be executed precisely

Qbit Connectivity : Not all qbits are physically connected
⇒ 2-qbit operations cannot be applied to arbitrary pairs of qbits
→ Reminder: 2-qbit operations are mandatory in a set of universal operations

⇒ Additional SWAP operations must be performed
⇒ Number of operations of proper algorithms further limited

Readout Error: Measurement of a qbit is imprecise
⇒ Results are distorted

2

© Frank Leymann

Decoherence

© Frank Leymann

Bloch Sphere

For |𝜓⟩=α|0⟩+β|1⟩ there is a θ∈[0, 𝜋] and a ρ∈[0, 2𝜋], such that

ψ = cosθ
2
0 + eiρ sinθ

2
1

ψθ

ρ
ψ = cos

θ
2

0 + eiρ sin
θ
2

1 ! θ ,ρ()

4

© Frank Leymann

Decoherence

T1 (relaxation time) - collapse:
Transition into an orthogonal state

T2 (dephasing time) - small disturbance:
Random change of phase

5

© Frank Leymann

Non-Applicability of
Classical Error Correction

Redundant codes (copies of qbits) cannot be created: No-Cloning!

A qbit will not change in a discrete manner (0 to 1, 1 to 0), but the amplitudes
of superposition can be changed arbitrarily: Continuous Errors!

Reading means measurement, but this destroys the state, i.e. recovery of the
original state is impossible: Destructive Reads!

6

© Frank Leymann

Physical/Logical Qbits
Encoding 1 qbit by 9 qbits allows to detect and correct any (bit single) error!

0 !
000 + 111() ⋅ 000 + 111() ⋅ 000 + 111()

2 2

1 !
000 − 111() ⋅ 000 − 111() ⋅ 000 − 111()

2 2

Multiple noisy "physical" qbits needed to realize 1 stable "logical" qbit!

…and other encodings are possible. But:

7

© Frank Leymann

Error Correction of Qbits

|𝜓⟩
|0⟩
|0⟩

|0⟩

|0⟩

Encoding Syndrom
Recognition

Recovery

Error Correction (EC)

"Noise"

8

© Frank Leymann

Gate Fidelity

© Frank Leymann

1-Qbit Operators:
Decomposition

A set U of 1-qbit operators is called universal :⇔
Each 1-qbit operator is a finite combination of operators from U

∃ α ,β ,γ ,δ ∈! : U = eiαRz β()Ry γ()Rz δ()
Let U be a 1-qbit operator. Then:

10

© Frank Leymann

Gates are Inherent Imprecise

θ

Rx θ()ψ

ψ

x

Rx θ() is rotation by angle θ around x-axis

Exact rotation around an angle is in
general impossible

⇒ Rotation is inherent imprecise

U = eiαRz (β) Ry (γ) Rz (δ)⇒ Each qbit operation has a small error

Rx (θ)

11

© Frank Leymann

Gate Errors

ϕT =UT ! ...!U1 ϕ0

Each operation Ui is a bit imprecise, produces a small deviation
from the exact result, i.e. instead of Ui an operation Ui is performed: ∼

ϕ1 =U1 ϕ0Thus, instead of the result !U1 ϕ0 = ϕ1 + E1 is produced

(Gate Error or [lack of] Gate Fidelity)

!ϕT = ϕT + ET + !UT ET−1 + !UT
!UT−1 ET−2 + ...+ !UT

!UT−1... !U2 E1

I.e. the final computed result of the algorithm is:

Applying the algorithm to 𝜑0 results in 𝜑T:UT ∘ ⋯ ∘ U1

12

© Frank Leymann

Error Propagation
 !ϕT − ϕT ≤ ET + ET−1 + ET−2 + ...+ E1

Let ε be the maximum error of all gates : ∀ 1≤ t ≤ T: !Ut −Ut() ≤ ε

⇒ !ϕT − ϕT ≤ Tε

 The accumulated error grows linear with the length of the computation

13

© Frank Leymann

Noisy Intermediate Scale Quantum computing: NISQ

Threshold Theorem
For any required precision of a computation C of a set of ideal gates,
there is an implementation C’ based on fault tolerant gates that
computes the results of C within the required precision…

⇒ Fault tolerance scales - in principle!

…if the fault tolerant gates fail less than a threshold η-times

Today(*) (2019), η≈10-2

(*) https://en.wikipedia.org/wiki/Quantum_threshold_theorem 14

© Frank Leymann

Fault-Tolerance: Principle
1 Qbit is encoded by
k error-correcting Qbits

1Qbit

k
Block,

physical Qbits

G

G’

Universal gate G is substituted
by a coded gate G’
(coded gate G’ ist quantum subroutine
implementing the functionality of G)

×

×

⎫

⎬
⎪⎪

⎭
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

Example

After executing a coded gate, error
correction on affected blocks are runG’ EC

×

EC

EC

⎫

⎬
⎪⎪

⎭
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

15

© Frank Leymann

Implication of Noise
N noisy "physical" qbits are needed to realize 1 stable "logical" qbit!

Single universal but noisy gate is realized by quantum subroutine!

Error correction on noisy qbit is run periodically!

⇒ More qbits needed than estimated by theoretical algorithms

⇒ More operations needed than estimated by theoretical algorithms

16

© Frank Leymann

Metrics of an Algorithm

17

© Frank Leymann

Depth and Width
of an Algorithm

The depth of a quantum circuit is the number of layers of
1- or 2-qbit gates that operate in parallel on disjoint qbits.

G11

G12

G13

G14

G21

G22

G23

G32

G31

The width of a quantum circuit is the number of manipulated qbits.
18

© Frank Leymann

Examples

G

Depth(G) = 2
Width(G) = 7

TH

S

H

G’

Depth(G’) = 3
Width(G’) = 3

TH

S

H
19

© Frank Leymann

Noisy Algorithms

Error! Error!

w: width
d: depth
ε: error rate

Rough estimation of the "size" of a quantum algorithm
that can be performed without errors:

wd ≪ 1
ε

20

© Frank Leymann

Consequences

Deep quantum algorithms ⇒ few qbits
⇒ efficient classical simulation possible

wd ≪ 1
ε

Shallow quantum algorithms ⇒ many qbits
⇒ potential for quantum advantage

21

© Frank Leymann

Transpilation
(a.k.a. Cross-Compilation)

© Frank Leymann

Transpilation:
Mapping to Hardware Gates

23

© Frank Leymann

Transpilation:
Increasing Depth

24

© Frank Leymann

Transpilation:
Decreasing Depth

25

© Frank Leymann

Transpilation

26

…on simulator

…on QPU

© Frank Leymann

Circuit Rewrite: Implications
The depth of a circuit can often be reduced by
"shifting gates to the left as far as possible",

i.e. without sacrificing the data flow.
This is mainly hardware independent.

27

Hardware dependent rewrite is required,
e.g. to map the gates of a hardware-independent circuit

to the gates supported by the concrete hardware.
This typically increases the depth of an algorithm (but may decrease it).
⇒ Inspection of transpiled circuit needed to assess executability.

© Frank Leymann

Input Preparation

© Frank Leymann

Reminder:
Quantum Algorithm

Unitary
Transformation Measurement

Result

State
Preparation

Preprocessing Postprocessing

29

© Frank Leymann

Quantum Algorithm: Paper Version

30

Quantum
Algorithm Paper

 Math

 Circuit

© Frank Leymann

Data for the Algorithm

31

Unitary
Transformation

Data as
Quantum

State

Data Points
(Vectors)

Set of Vectors Categorical
Data

QUBOs

Matrices
…

 Assumption

© Frank Leymann

Data as Quantum State

32

Unitary
Transformation

State
Preparation

Classical
Pre-

Processing

(x1, . . . , xN) ↦ (cos x1

sin x1) ⊗ ⋯ ⊗ (cos xN

sin xN)

© Frank Leymann

State Preparation
Various possibilities (each with pros and cons), e.g.:

Basis Encoding

Amplitude Encoding

Tensor product encoding

Corresponds to two categories

Digital encoding
…for performing arithmetics

33

Schmidt encoding

Analog encoding
…for processing in high-dimensional feature spaces

© Frank Leymann

Basis Encoding
Let x ∈ ℕ

Then, x will be binary encoded, i.e. (x1,…,xn) ∈ {0,1}n with Σxk2k = x

x ↦ |x1,…,xn⟩ is called Basis Encoding of x ∈ ℕ

Base encoding is a representative of digital encodings

34

© Frank Leymann

Basis Encoding: Circuit

n qbits

n gates

depth 1

0 ancillae

Resources for encoding n bits:

35

Obviously, this circuit can be generated in a preprocessing step:

Xb1 ⊗ ⋯ ⊗ Xbn |0⋯0⟩

|0⟩ |b1⟩

|0⟩ |bn⟩

…
Xb1

Xbn

© Frank Leymann

Basis Encoding:
Real Numbers

A number x ∈ ℝ is approximated in binary representation to k decimal places:

x ≈
n

∑
i=0

bi2i +
k

∑
i=1

b−i ⋅
1
2i

E.g. let x=1.7 and k=4, i.e. x = 1 ⋅ 20 +
4

∑
i=1

b−i ⋅
1
2i

…next, compute decimal places:

0.7 · 2 = 1.4
0.4 · 2 = 0.8
0.8 · 2 = 1.6
0.6 · 2 = 1.2
0.2 · 2 = 0.4
0.4 · 2 = …

0.710 = 101102
…i.e. 1.7 approximated to
4 decimal places: 1 1011

…
pe

rio
di

c…

36

© Frank Leymann

Input Preparation of Real Numbers:
Base Encoding

Preprocessing
Compute binary representation of x

x ≈
n

∑
i=0

bi2i +
k

∑
i=1

b−i ⋅
1
2i

Generate corresponding circuit

Xbn ⊗ ⋯ ⊗ Xb−k |0⋯0⟩

State Preparation

|0⟩ |bn⟩

|0⟩ |b−k⟩

…

Xbn

Xb−k

(Note: signs w.l.o.g.
not considered)

37

© Frank Leymann

Basis Encoding
of Real Vectors

The sign of a number is represented by a leading 1 ("−") or 0 ("+")

I.e. (4 decimal places): −0.710 = 1 10112 +0.110 = 0 10012 +0.210 = 0 00112

Thus,

x = (
−0.7
0.1
0.2) ↦ (

11011
01011
00011) ↦ |11011 01001 00011⟩ = |x⟩

x = (
−0.7
0.1
0.2) ∈ ℝ3Let

(It’s obvious how to generalize the preparation method for real numbers
in base encoding to real vectors in base encoding)

38

© Frank Leymann

Basis Encoding
of Data Sets

Let D = {x1,…,xm} be a data set to be processed by a quantum algorithm

Representation of D as a quantum state: |D⟩ =
1

m

m

∑
i=1

|xi⟩

Example: x1 = |101⟩ and x2 = |011⟩, then |D⟩ =
1

2
(|101⟩ + |011⟩)

|D⟩ =
1

2

0
0
0
1
0
1
0
0

…as a amplitude vector: I.e. state vectors of binary data sets
are typically sparse vectors

39

© Frank Leymann

Amplitude Encoding

x ↦ Σxi|i⟩ is called amplitude encoding of x ∈ ℝN

Let x=(x1,…,xN) ∈ ℝN be a unit-length vector, N = 2n (⇒ |xi|≤1 ∀i)

The amplitude encoding is an analog encoding

40

For x ∈ ℝN , N ≠ 2n, use a proper embedding (called padding):

x ↦ (x,0) ∈ ℝN×ℝM, (N+M) = 2n, for the smallest possible n

Required qubits:⌈ log2 N⌉
Required gates: 4N

© Frank Leymann

Amplitude Encoding
of Non-Unit-Length Vectors

x ↦ ∑
xi

x
| i⟩For x ∈ ℝN \{0} the encoding is

41

Note: a matrix A ∈ ℝn×m can be represented as vector in ℝnm

|A⟩ = ∑
aij

A
| i⟩ | j⟩

The || . || may be computed classically as preprocessing step

© Frank Leymann

Normalization and
"Neighborhood"

Normalizing the members set D ⊆ ℝN changes the relation between the members

…which must be considered in certain algorithms (e.g. clustering)

o
+1−1

x
y

42

o
+1−1

x’ y’

o
+1−1

x/||x||
y/||y||

© Frank Leymann

(Tensor) Product Encoding

Each xi is represented by a separate qbit:

xi ↦ cos xi ·|0⟩ + sin xi ·|1⟩

x ↦ (cos x1

sin x1) ⊗ ⋯ ⊗ (cos xN

sin xN)Then,

is called (tensor) product encoding of x (a.k.a. angle encoding)

Product encoding is a representative of an analog encoding

43

Required qubits: N
Required gates: N

Let x=(x1,…,xN) ∈ ℝN be a unit-length vector (⇒ |xi|≤1 ∀i)

© Frank Leymann

Circuit for Product Encoding

Ry (2x) = (cos x −sin x
sin x cos x) ⇒ Ry (2x) |0⟩ = cos x ⋅ |0⟩ + sin x ⋅ |1⟩

Thus: (
n

⨂
i=1

Ry(2xi)) |0⋯0⟩ = (cos x1

sin x1) ⊗ ⋯ ⊗ (cos xn

sin xn)

|0⟩

|0⟩

|0⟩

Ry(2x1)

Ry(2x2)

Ry(2xn)

…

44

© Frank Leymann

Input Preparation of Real Vectors:
Product Encoding

Preprocessing

State Preparation

Generate the circuit

(
n

⨂
i=1

Ry(2xi)) |0⋯0⟩

|0⟩

|0⟩

|0⟩

Ry(2x1)

Ry(2x2)

Ry(2xn)

…

45

© Frank Leymann

Schmidt Decomposition

46

λi are called Schmidt Coefficients of v, K is called Schmidt Number of v
(a.k.a.: Schmidt Rank)

Let x ∈ V ⊗ W. There exist ONB {uj} ⊆ V and {vj} ⊆ W such that:

mit λi>0 and . λi = 1∑

x =
K

∑
i=1

λi ⋅ ui ⊗ vi

© Frank Leymann

Schmidt Decomposition via
Singular Value Decomposition

Choose ONB {ei} and {fj} for V and W

Represent x as x = ∑
i,j

βij ⋅ ei ⊗ fj

Split the quantum register R into two parts: R = V ⊗ W

Compute the singular value decomposition of M = (βij): M = (U1 U2) (A
0) V*

Choose the column vectors of U1 → {u1,…,uK}

Choose the column vectors of V → {v1,…,vK}

A = diag(λ1,…λK)

⇒ x =
K

∑
i=1

λi ⋅ ui ⊗ vi

}A, U1, V

47

© Frank Leymann

…and each of the 1-qbit gates is represented as rotations:
Mj = eiαjRz (βj) Ry (γj) Rz (δj)

(βij) = (U1 U2) (A
0) V*x = ∑

i,j

βij ⋅ ei ⊗ fi , then SVD:

State Preparation Based On
Schmidt Decomposition

48

…
…

A
…

U1

V

|0⟩
|0⟩

|0⟩
|0⟩
|0⟩

|0⟩

}|x⟩

U1, V, A have to be composed of 1-qbit & 2-qbit operations:
→ U1=M1⊗…⊗Mr, V=Mr+1⊗…⊗Mr+s , A=Mr+s+1⊗…⊗Mr+s+t

where each Mi is a 1-qbit gate or a CNOT

© Frank Leymann

Refinement

…
…

A
…

U1

V

|0⟩
|0⟩

|0⟩
|0⟩
|0⟩

|0⟩

}|x⟩

…
Mj

Mk

Mi …

Mr

Ms

…

Ma

Mc

Mb

eiαjI Rz (βj) Rz (δj)Ry (γj)

49

© Frank Leymann

State Preparation

…
…

A
…

U1

V

Input Preparation of Real Vectors:
Schmidt Decomposition

Preprocessing

Compute A, U1, V

Compute A = ⨂
i

Mi, U1⨂
j

Mj, V = ⨂
k

Mk

Ml = eiαlRz (βl) Ry (γl) Rz (δl)Compute

Generate corresponding circuits
50

© Frank Leymann

General Proceeding:
Input Preparation

Preprocessing
Decide encoding
Compute parameter
Generate gates
Generate circuit

State Preparation

Execute circuit Unitary
Transformation Measurement

Postprocessing

51

© Frank Leymann

Implication
of State Preparation

State preparation requires additional operations and additional qbits
as well as classical preprocessing

compared to the "ideal" algorithm.

52

© Frank Leymann

Oracle Expansion

© Frank Leymann

Reminder:
Quantum Algorithm

Unitary
Transformation Measurement

Result

State
Preparation

Preprocessing Postprocessing

54

© Frank Leymann

Algorithm of Deutsch

55

H

H
Uf

H x0

1

© Frank Leymann

Sample Oracle

56

Let f : {0,1} → {0,1} be the function 0 ↦ 1, 1 ↦ 0

For Uf|x,y⟩ = |x, y⊕f(x)⟩ an oracle is:

0
0 → 0

1
0
1 → 0

0
1
0 → 1

0
1
1 → 1

1

|x⟩

|y⟩

|x⟩

|y⊕f(x)⟩
Uf ≡

|x⟩

|y⟩

|x⟩

|y⊕f(x)⟩

X

≡
X

(Note: different f require different Uf!)

© Frank Leymann

Resulting Circuit
H

H
Uf

H x0

1

(Oracle Expansion)

|0⟩

|1⟩

|x⟩

|y⊕f(x)⟩

H

H

H

Uf

X X

57

© Frank Leymann

Algorithm of Shor

58

|0⟩

|0⟩

|0⟩

|0⟩

H

H

⋮

⋮
Uf

QFT ⋮

⋮

Classical
Post-Processing

(continued
fractions)

…computing f(x) = ax mod n (→ multiplication, addition,…)

© Frank Leymann

Addition
|x1⟩

⋮
|x2⟩

|xn⟩

|y1⟩

|yn⟩

|yn-1⟩

R2 RnZ ⋯

QFT Rn-1Z ⋯

Z⋯

QFT-1

}
}

|x⟩

|y+x⟩

S1 S2 Sn

! !
Rk = (1 0

0 e2πi/2k) (and R0 = Z)

Time complexity: O(n2)

(Depth of the circuit can be
significantly reduced, e.g.
ZC of S2 can run in parallel
to ZC of S1 etc…)

https://arxiv.org/abs/quant-ph/0008033v1 59

© Frank Leymann

QFT

60

…

…H R2 RnRn-1 …
!

H R2 Rn-2 Rn-1…

… …
…

…

…

…

…

H R2

H

S1 S2 Sn-1 Sn

|xn-1⟩

|xn-2⟩

|x1⟩

|x0⟩

© Frank Leymann

Multiplication: Sample

61

Computation of b+ax, a: 3-bit constant, x: 3 qbit, b: 6 qbit

http://arxiv.org/abs/1207.0511v5

© Frank Leymann

Shor Circuit:
Summary

⋮

62

© Frank Leymann

Implication
of Oracle Expansion

Oracle expansion requires additional operations (and additional qbits)
compared to the "ideal" algorithm.

63

© Frank Leymann

Connectivity

© Frank Leymann

Reminder:
Quantum Algorithm

Unitary
Transformation Measurement

Result

State
Preparation

Preprocessing Postprocessing

65

© Frank Leymann

CNOT
(Controlled Not)

 0 1
0 0 1
1 1 0

⊕

If x=1 then y will be negated; otherwise, y is not changed at all
(x is called control-qbit, y is called target-qbit)

CNOT Gate

x

y

x

x⊕y

The set of 1-qbit Operators and CNOT is universal.

66

© Frank Leymann

Hardware Restrictions

Can be immediately applied

Can not be
immediately applied

2-qbit operator on two qbits requires connection between them

 ⇒ Connectivity of a quantum chip is important

67

© Frank Leymann

Hardware: Connectivity

http://docs.rigetti.com/en/1.9/_images/acorn.png

https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/

68

© Frank Leymann

Swap Operator

I.e. both input qbits are exchanged

SWAP : H⊗H→H⊗H

00 ! 00

01 ! 10

10 ! 01

11 ! 11

SWAP Gate

x

y

y

x

×

×

×
×

≡

69

© Frank Leymann

Example:
Considering Topology

Rx

b1

b2

b3

b4

Logical Algorithm

q1 q2 q3

q4

Topology Graph

+
Rx

b1

b2

b3

b4

×
× ×

× b3

b1

b2

b4

b2

b3 b1

b3

Rx

b1

b2

b3

b4

b3

b1

b2

b4

Physical Algorithm

Initially, bi ↦ qi
("qbit allocation")

70

© Frank Leymann

Example:
Variation-Aware Qbit Movement

q1

q2

q3

q5

Topology Graph

q4

q7

q6

q8

0.5

0.3

0.8

0.80.9

0.9

0.7

0.9

0.33
0.15

Typically, 2-qbit operations along different connections have different success rate

Annotation sij on the edge {qi,qj} denotes the success rate of a 2-qbit operation
involving qbit qi and qj

Scenario: a 2-qbit operation Ω is to be performed on q1, q3

Swapping q3 → q2, followed by Ω(q1,q2) has success rate
0.3 × 0.5 = 0.15

Swapping q3 → q4 → q5 → q6 → q7 → q8 followed by
Ω(q1,q8) has success rate 0.8×0.8×0.9×0.9×0.7×0.9 = 0.33

⇒ Using a single SWAP followed by Ω has a lower
success rate than using 5 SWAPs followed by Ω

⇒ Success rate of qbit connections influences the number of SWAPs performed
as well as error rates of 2-qbit operations

Even worse, the success rate changes over time!
71

© Frank Leymann

Mapping Weight

q5, q6, q7 0.81

q1, q2, q3 0.15
q2, q3, q4 0.24
q3, q4, q5 0.64

q7, q8, q1 0.63

…

…

Example:
Variation-Aware Qbit Allocation

The qbits of the quantum circuit must be assigned to physical qbits of the QPU

qreg Q[3];
creg C[3];

x Q[0];
cx Q[0],Q[1];
cx Q[2],Q[1];
measure Q[1] -> C[1];

q1

q2

q3

q5

q4

q7

q6

q8

0.5

0.3

0.8

0.80.9

0.9

0.7

0.9

This is an initial allocation that changes during the execution
The goal is to improve reliability of the computation

Naive allocation selects any subgraph to minimizes SWAPs
Considering success rate of connections determines connected subgraph
with maximum weights

In the example: Q0, Q1, Q2 ↦ q5, q6, q7

72

© Frank Leymann

Implication of Connectivity
The connectivity of a QPU implies

the injection of additional (SWAP) operations
into the "ideal" algorithm.

74

The success rate of qbit connections influence the number of SWAPs
as well as the error rate of 2-qbit operations

Considering the success rate of qbit connections
as well as error rate of 1-qbit operations

during qbit allocation of a quantum circuit
influences the reliability of its execution

© Frank Leymann

Readout Errors

© Frank Leymann

Reminder:
Quantum Algorithm

Unitary
Transformation Measurement

Result

State
Preparation

Preprocessing Postprocessing

76

© Frank Leymann

Readout Errors
Duration of a measurement is significantly larger than decoherence time

⇒ a qbit under measurement may relax during this time
 (e.g. flip from |1⟩ to |0⟩ in between)

Thus, readout errors correspond to
disturbed probability distributions of measured results

77

© Frank Leymann

Let t be the true distribution, m be the measured distribution — t, m ∈ ℕk —
where k is the number of values, and ti, mi ∈ ℕ is the count of the i-th value

Principle:
Correcting Readout Errors

Unfolding: Reconstruction of a true "undisturbed" distribution
out of a measured "disturbed" distribution

m: Value

Count

t:

t, m are related by a calibration matrix(*) C: t = C·m

Correcting readout errors means
determining the calibration matrix C

(unfolding method)

with Cij = Prob(measured value = j | true = i)

78(*) a.k.a. response matrix

(several unfolding methods exist, the following is a straightforward one)

© Frank Leymann

Constructing
the Calibration Matrix

|0⟩

|0⟩

|0⟩

……

X|0⟩

|0⟩

|0⟩

…… … …
|0⟩

|0⟩

…|0⟩ X…

X|0⟩

|0⟩

|0⟩

…X……

X|0⟩

|0⟩

|0⟩

…X…

X

…

Construct and measure each element of the computational basis |i⟩∈{0,1}n

I.e. use the above so-called calibration circuits Ci, 0≤i≤n−1

Applying circuit Ci should result in [i], but result [j] is readout error

C0 C1 C2 Ck Cn-1

Ci is performed M times
If [j] results K times, then Cij = K\M

[i] : integer value of |i⟩ 79

⇒ Cij = Prob(measured value = j | true = i)

© Frank Leymann

X|0⟩

|0⟩

|0⟩

……

C1 C1,0 = 0.03320
C1,1 = 0.91406
C1,3 = 0.01172
C1,5 = 0.00879
C1,9 = 0.02539
C1,11 = 0.00098
C1,13 = 0.00098
C1,17 = 0.00391
C1,25 = 0.00098

…all other C1,i = 0

© Frank Leymann

Implication
of Readout Errors

Correcting readout errors requires additional operations
(namely the calibration circuits)

to determine the calibration matrix regularly
(fortunately not for every execution of the "ideal" algorithm)

Correcting readout errors requires classical post-processing,
i.e. applying the calibration matrix to the measured results

81

© Frank Leymann

Readout Errors:
Periodic processing

82

Preprocessing

Prepare |0…0⟩ Execute Cs Measure |s⟩

Postprocessing
|s⟩=|b0b1…bn-1⟩ ∈ {0,1}n

Generate circuit

Cs = Xb0 ⊗ ⋯ ⊗ Xbn−1

0 ≤ s ≤ 2n-1
C = (Cs)
Store C

© Frank Leymann

Readout Errors:
Postprocessing

83

State
Preparation

Unitary
Transformation

Preprocessing Unfolding:
t ≈ C ⋅ m = ̂t

Readout

…

| t⟩

↦ m

̂t

© Frank Leymann

NISQ Analyzer

84

© Frank Leymann

NISQ Assessment

Error bound 𝜀 NISQ Analyzer
Execution
possible:

Depth? Width?
…

NISQ Analyzer QC1 or QC2?

QC1 QC2

X H Y m

X H Y m

85

© Frank Leymann

Provenance: Definition
Definition

Information describing a process, computation, or data

Goals: reproducibility, understandability, quality

Importance for QC

Noisy machines (decoherence, gate infidelity,…)

Very different hardware implementations
(superconducting, trapped ion, optical, …)

86

© Frank Leymann

Provenance: Categories

X H X m

X H X m|𝜓⟩

Available gates, topology,…U2 CXU3 …

87

SPAM Errors

Used gates, depth,…

© Frank Leymann

Provenance Usage

88

Algorithm

Analyzer Provenance
Database

Device

Depth,
Gates,…

Topology,
Gates,…

APICollector

Aggregator

Calibration Matrix,…

© Frank Leymann

Hardware Dependent
Operations

Set of basic operators is hardware implementation dependent

E.g. continuous-variable (CV) operations in optical quantum computers

Squeezing, FockState,... in PennyLane

Thus, NISQ compiler must even be aware of implementation of hardware

E.g. different sets of basic operators implemented by vendors of same
category of hardware implementation

E.g. U1, U2, U3,… on IBM Q; or Rx(𝜋/2), CZ,… on Rigetti; …

89

© Frank Leymann

NISQ Rewriting

Modeling Tool

QISKit
(IBM)

pyQuil
(Rigetti)

IBMQ_16_Melbourne
(15 Qubits)

Agave
(8 Qubit)

Translator

QISKit
Plugin

Forest
Plugin

Project Q
Plugin …

X H Y m

90

© Frank Leymann

Rewriting StagesQuantum Algorithm

Input

Readout Error Mitigation
Preparation

M-1 = [0.98 0.03
0.02 0.97]

-1 [1.02105263 −0.03157895
−0.02105263 1.03157895]

Calibration Matrix

Execution Readiness
QPU1 → ✓ - Recommendation

QPU2→ ✗

QPU3→ ✓
…
QPUN→ ✗

Recommentation:
Deploy on QPU1, QPU3

Metrics
QPU1 →{μ11, μ12, …}

QPU2→{μ21, μ22, …}

…
QPUN→{μN1, μN2, …}

Metrics
E.g. decoherence time (T1, T2), gate fidelity,…

Data Prepatration Data Preparation
Inject circuit that initializes input state

Oracle Expansion

Oracle Expansion
Inject circuit of oracle logic

QPU1

QPU2

QPU3

…
QPUN

Gate Mapping

Gate Mapping
Substitute gates by circuit of vendor supported
gates

© Frank Leymann

NISQ Recommender

© Frank Leymann

Final Remarks

© Frank Leymann

Summary
NISQ is determined by

Decoherence
Gate infidelity
Readout errors
Connectivity

Data preparation is another problem

All these problems can be addressed…
…but require additional gates and qbits

Thus, resources available for proper algorithm is further reduced

NISQ Analyzer (Rewriter, Recommender,…) will be a tool that helps to
determine best QPU to be used for solving a problem based on a given
algorithm and given data under constraints like cost, precision,…

94

Measurement yet another one

© Frank Leymann

The End

