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1 Background

In October of 2009 at Stanford University, the late Grigori “Grisha” Mints asked the senior author
whether a naive set theory could be consistent in modal logic. Here are two versions of a modal
comprehension principle:

(∃y)(∀x)(x ∈ y↔ 2ϕ) (Comp2)

(∃y)(∀x)2(x ∈ y↔ 2ϕ) (2Comp2)

where as usual y is not free in ϕ. The idea of the question is that by restricting to modalized
formulas the derivation of the usual Russell Paradox could be blocked.

In the most commonly used systems, where the Converse Barcan Formula (2∀xϕ → ∀x2ϕ)
is derivable, (2Comp2) follows from the principle

(∃y)2(∀x)(x ∈ y↔ 2ϕ).

(If the Barcan Formula (∀x2ϕ→ 2∀xϕ) is also a theorem schema, the two comprehension prin-
ciples are equivalent.) In his lecture, later revised for 2010, Scott presented his Modal ZF, which
uses the stronger pattern of modal operators, but comprehension is restricted by a membership
clause as is usually done in standard ZF:

(∃y)2(∀x)(x ∈ y↔ x ∈ u ∧ ϕ). (MZF Comp)
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Scott was working in the Lewis system S4 of modal logic and Mints was happy to position his
question in the same modal system. Obviously a very, very weak modality can avoid paradoxes,
but such results may not be especially interesting.

At that time Scott could not answer the consistency question, and neither could Mints, though
they both agreed that a set theory based on (Comp2) would probably be very weak. And there,
to the best of our knowledge, the problem sat ever since.

Last November Scott received a notice from Carnegie Mellon that there would be a philos-
ophy seminar on a naive set theory by Lederman (see Field et al. (forthcoming)). Scott wrote
him for his paper and said, “By the way, there is this question of Grisha Mints, and I wonder if
you have an opinion?” Lederman sent back a sketch of a proof of inconsistency for the strength-
ened version of (2Comp2), which did not quite work out, but the exchange became the basis for
sections 3-6 of the present note.

In the first draft of the paper, Scott and Lederman left open the consistency of (Comp2),
although they observed that it was not inconsistent by the analogue of the Russell set alone.
Scott and Lederman tried out several model possibilities for the consistency of that principle,
without success. In March of 2015 Liu approached them with a related model, which after a small
correction gave a consistency proof. A few days later, Fritz approached them with essentially the
same model, and his presentation is the basis of section 2. Fritz later proved the results in section
7.1, and provided the discussion of related work.

Modalized comprehension principles have been studied in a number of different settings in
the literature. One is intensional higher-order logic (see, e.g., Gallin (1975, p. 77) or Zalta (1988,
p. 22)), where a syntactic distinction between types allows for an unrestricted comprehension
principle. Such discussions usually work with models with constant (first- and higher-order)
domains; for discussions of comprehension principles appropriate for variable domains of all
types, see Williamson (2013, chapter 6.3–6.4) and Fritz & Goodman (unpublished, section 5).

Another common form of modal comprehension principles occurs in modal set theories
which are obtained by modalizing common set theories (e.g., such a system for metaphysical ne-
cessity is presented in Fine (1981)). Systems for epistemic modalities were developed by several
authors in the 1980s (e.g. the contributions by Myhill, Goodman and Ščedrov to Shapiro (1985),
or the references in Goodman (1990)). In such theories, comprehension is usually restricted as in
(MZFComp) above.

Both of these kinds of modal comprehension principles differ fundamentally from the naive
principles in that they are modalizations of versions of comprehension which are already consis-
tent. Modalizing naive comprehension in order to make it consistent has been less widespread,
but several such strands can be identified in the literature. The first uses modality to make the
iterative conception of set explicit by reformulating comprehension to say that at some stage,
there is a set defined by a given condition, using a possibility operator to formalize “at some
stage”. Pioneered by Parsons (1983), such principles were recently investigated in Studd (2013)
and Linnebo (2013); see also Linnebo (2010).
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The second strand goes back to Aczel & Feferman (1980), who save the naive comprehension
principle from inconsistency by replacing its material biconditional by an intensional one; see
Feferman (1984) for a survey of related literature. Even closer to (2Comp2) is the following
comprehension principle proposed by Krajı́ček (1987):

(∃y)(∀x)((2x ∈ y↔ 2ϕ) ∧ (2¬x ∈ y↔ 2¬ϕ)) (MCA)

Krajı́ček proves that this principle is inconsistent in S5, and it seems still to be an open problem
whether it is consistent in the relatively weak modal logic T (see Krajı́ček (1988) and Kaye (1993)).

Finally, Fitch (1966) proposed a comprehension principle which may be rendered as (Comp2).
Fitch motivates this principle philosophically in Fitch (1967b), and formally develops a set theory
on the basis of it in Fitch (1967a) (a correction, prompted by a review of Rundle (1969), appeared
as Fitch (1970)). This formal development is in the form of a combinatory logic, rather than a
standard first-order modal logic, which makes a comparison to the present proposal difficult;
see (Cantini, 2009, section 4.2) for helpful discussion.

(Comp2) is perhaps the most natural way of using a modality to restrict naive comprehen-
sion, so we shall begin by investigating a set theory based on this principle. We find that it is
consistent, but the model we provide shows that it is too weak to provide a basis for mathemat-
ics beyond number theory. We thus study (2Comp2) in the remainder of the paper, and find that
in common modal systems an inconsistency can be derived by a suitable version of the Russell
paradox.

2 The Consistency of (Comp2)

Our language will be the language of predicate logic with ¬,∧, ∀ plus identity = and the relation
symbol ∈, along with the unary modal operator 2. The symbols ∨,→, ∃ and 3 are introduced
as metalinguistic abbreviations in the usual way. The modal system T can then be axiomatized
with the following schematic axioms and rules:

(LPC) Any substitution instance of a theorem of predicate logic.
(K) ` 2(ϕ→ ψ)→ (2ϕ→ 2ψ)
(T) ` 2ϕ→ ϕ

(MP) From ` ϕ and ` ϕ→ ψ infer ` ψ

(∀2) From ` ϕ→ ψ infer ` ϕ→ ∀xψ, provided x is not free in ϕ

(RN) From ` ϕ infer ` 2ϕ

Using (K), (MP), and (RN), it is routine to show that T has the derived rule

(RM) From ` ϕ→ ψ infer ` 2ϕ→ 2ψ and ` ♦ϕ→ ♦ψ
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This system does not allow the derivation of the Barcan formula (∀x2ϕ → 2∀xϕ). It does,
however, allow us to derive the converse Barcan formula (2∀xϕ→ ∀x2ϕ).1 Since every theorem
schema of propositional logic is a theorem schema of predicate logic, the above logic contains
propositional logic. We will often write “PL” for steps in the proofs which are justified by invok-
ing obvious propositional theorems, together with modus ponens. The logic T, and all logics we
discuss in this paper allow the replacement of provable equivalents in all contexts; we refer to
this rule as (Rep).

S4 is the system which results by adding the schematic axiom (L4) 2ϕ → 22ϕ to the above
axiomatization of T (and closing under the rules). S5 is the system which results by adding
(L5) ¬2ϕ → 2¬2ϕ to T; the resulting system proves every instance of (L4). In the quantified
setting as above, S5 (and any logic which contains the modal axiom (B) (ϕ→ 23ϕ) proves every
instance of the Barcan Formula. T is a sublogic of S4 and both are sublogics of S5, the system of
this section.

2.1 Consistency

To construct a model validating (Comp2), fix any countably infinite set D; this will serve as the
(constant) domain of the model. Assuming identity is always necessary, and since any finite or
cofinite set X can be specified using only identity and a finite number of parameters, the model
must interpret ∈ in such a way that at each world, there is an element which contains all and
only the members of X. The idea behind the following model is to let the interpretation of ∈ vary
sufficiently among worlds so that no further witnesses for (Comp2) are required.

Thus, letting F be the set of finite and co-finite subsets of D, we use the bijections w : D ↔ F
from D to F as the worlds, and interpret ∈ using the following interpretation function:

V(∈, w) = {〈o1, o2〉 ∈ D× D| o1 ∈ w(o2)}

The simplest variant of this model construction would be to take as our set of worlds simply the
set of all bijections from D to F, but this set would be uncountable. To show that we can make do
with a countable set of worlds, we proceed as follows.

For any permutation π of D and bijection f : D → F, define π( f ) : D → F such that
π( f )(π(o)) = π( f (o)) for all o ∈ D. In such a case, π( f ) is a bijection from D to F as well.
For any permutation π of D, let the set of elements of D not mapped to themselves by π be
called the support of π; let S be the set of permutations of D whose support is finite. Choosing
any bijection b : D → F, we can now construct the set of worlds as follows: W = {π(b)|π ∈ S}.
Since D is countable, S and W are countable as well. Further, since S is closed under composition,
π(w) ∈W for all π ∈ S and w ∈W. Note also that b ∈W.

Let the model M = 〈W, D, V〉, and define truth of a formula ϕ relative to M, a world w ∈ W

1For a proof, see section 7.1, where we extend some of our main results to a logic in which this principle cannot be
derived.
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and assignment function a from the set of variables to D (written M, w, a � ϕ) as usual. Since
there is no accessibility relation, 2 is interpreted as truth in all worlds, and since there is no
varying domain function, quantifiers range over D at all worlds.

To show that M validates (Comp2), we start with a few definitions. First, the extension of a
formula with a distinguished variable relative to a world and assignment:

Jϕ(x)KM,w,a = {o ∈ D|M, w, a[o/x] � ϕ}.

Next, if π is any permutation of D, we extend applying π to two further constructions in natural
ways: For any O ⊆ D, let π(O) = {π(o)|o ∈ O}. For any assignment function a, let π(a) be
the assignment function such that π(a)(z) = π(a(z)). In the following lemmas, unless noted
otherwise, π is an arbitrary member of S.

Lemma 2.1. M, w, a � ϕ iff M, π(w), π(a) � ϕ.

Proof. By induction on the complexity of ϕ; only the case for ∈ is interesting:
M, w, a � x ∈ y iff
a(x) ∈ w(a(y)) iff
π(a(x)) ∈ π(w(a(y))) iff
π(a(x)) ∈ π(w)(π(a(y))) iff
π(a)(x) ∈ π(w)(π(a)(y)) iff
M, π(w), π(a) � ϕ. QED

Lemma 2.2. π(Jϕ(x)KM,w,a) = Jϕ(x)KM,π(w),π(a).

Proof. π(Jϕ(x)KM,w,a)
= {π(o)|o ∈ D and M, w, a[o/x] � ϕ}
= {o ∈ D|M, w, a[π−1(o)/x] � ϕ}
= {o ∈ D|M, π(w), π(a[π−1(o)/x]) � ϕ} (by the previous lemma)
= {o ∈ D|M, π(w), π(a)[o/x] � ϕ}
= Jϕ(x)KM,π(w),π(a) QED

Lemma 2.3. If π(a(z)) = a(z) for all variables z free in ϕ, π(J2ϕ(x)KM,w,a) = J2ϕ(x)KM,w,a.

Proof. π(J2ϕ(x)KM,w,a)
= J2ϕ(x)KM,π(w),π(a) (by the previous lemma)
=

⋂
v∈WJϕ(x)KM,v,π(a)

=
⋂

v∈WJϕ(x)KM,v,a (since π(a(z)) = a(z) for all variables z free in ϕ)
= J2ϕ(x)KM,w,a QED

Lemma 2.4. If O ⊆ D is finite and O′ ⊆ D is such that π(O′) = O′ for all π ∈ S such that π(o) = o
for all o ∈ O, then O′ ∈ F.
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Proof. Assume for the sake of contradiction that O′ /∈ F. Then there are o1, o2 ∈ D\O such that
o1 ∈ O′ and o2 /∈ O′. Now consider the transposition (o1o2) which switches o1 and o2. (o1o2) ∈ S,
but (o1o2)(O′) 6= O′. But this contradicts the assumption. QED

Theorem 2.5. (Comp2) is valid in the model M.

Proof. Consider any ϕ in which y is not free, w ∈ W and assignment a. It suffices to show that
M, w, a � ∃y∀x(x ∈ y ↔ 2ϕ). Note that by the preceding two lemmas, J2ϕ(x)KM,w,a ∈ F. By
construction of M, there is an o ∈ D such that w(o) = J2ϕ(x)KM,w,a; this witnesses the existential
claim. QED

Proposition 2.6. Aside from the principles of S5, the following are valid in the model:

(Bar) 2∀xϕ(x)↔ ∀x2ϕ(x)
(Ext) (∀y)(∀z) [(∀x) (x ∈ y↔ x ∈ z)→ y = z]

(Neg) (∀z)(∃y)(∀x) [x ∈ y↔ ¬(x ∈ z)]
(Con) (∀z1)(∀z2)(∃y)(∀x) [x ∈ y↔ (x ∈ z1 ∧ x ∈ z2)]

(Comp3) (∃y)(∀x) [x ∈ y↔ 3ϕ(x)]
(Equ) ∀x∀y(3x = y→ 2x = y)

(Mem) ∀x∀y3x ∈ y
(Non) ∀x∀y3¬x ∈ y

Proof. All but the last two are straightforward. For (Mem), first, we have to show that for any a,
there is some π(b) ∈W satisfies x ∈ y.

Case 1. a(x) = a(y). Let π be a permutation with finite support such that for some i ∈ N,
i ∈ π(b)(i). Then pick a finite-support π∗ with π∗(b)(i) = a(x), and let w = π∗(π(b))
guaranteeing a(x) ∈ π(b)(a(x)). Thus M, π∗(π(b)), a � x ∈ y.

Case 2. a(x) 6= a(y). Pick distinct i, j ∈ N, and a π such that i ∈ π(b)(j) holds. Now define
π∗(b) such that π∗(b)(i) = a(x) and π∗(b)(j) = a(y) so that M, π∗(π(b)), a � x ∈ y.

The proof of (Non) is similar.
QED

2.2 Undecidability

We rely on the following general result of Tarksi, Mostowski and Robinson (1953, pg. 18, Theo-
rem 6):

Theorem. Let T1 and T2 be two compatible theories such that every constant of T2 is a constant of T1. If
T2 is essentially undecidable and finitely axiomatizable, then T1 is undecidable, and so is every sub theory
of T1 which has the same constants.
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Call a binary relation R on a countably infinite set D “memberly” if the transformation
m 7→ {n|nRm} is a bijection between D and F (where again F is the set of finite and cofinite sub-
sets of D). Letting a memberly structure be an infinite set together with a memberly relation on
the set, we show that one can interpret Robinson Arithmetic in such memberly structures. Since
a memberly structure induces a bijection b : D → F, memberly structures can be used as the
basis for models of (Comp2)+S5 such as the one constructed for Theorem 2.5. Moreover, since
Robinson Arithmetic is known to be essentially undecidable and finitely axiomatizable, our in-
terpretation of Robinson Arithmetic on memberly structures will demonstrate that (Comp2)+S5
is consistent with an essentially undecidable, finitely axiomatizable theory which contains the
same constants, and hence that (Comp2)+S5 is itself undecidable.

To provide an interpretation of Robinson Arithmetic, we use the fact that “Adjunctive Set
Theory” is known to interpret Robinson Arithmetic (Montagna & Mancini (1994)). All we must
show is that the following two axioms of this theory can be interpreted on our structures:

∃y∀x(¬x ∈ y) (Empty)

∀y∀z∃w∀x(x ∈ w↔ x ∈ y ∨ x = z) (Add)

To interpret this theory, we make use of the possibility of defining finiteness in memberly struc-
tures. Clearly if this can be done, then restricting attention to the finite sets, we can show that the
finite sets provide a model of the axiom (Add). Given the necessity of identity, (Comp2) entails
(Empty), as can be seen by instantiating on x 6= x.

For clarity, we use ∈ as a symbol for the memberly relation R. Among the finite sets given by
the memberly relation are all singletons; the singleton of a can be defined as {a} = {x|x = a}. But
given that exactly the finite and cofinite sets exist, it is readily seen that a is finite iff {{x}|x ∈ a}
exists. We can use this fact to define finiteness. This allows us to show the satisfaction of the
axiom (Add) on the finite sets, which shows by the paper already cited that Robinson Arithmetic
can eventually be interpreted in memberly structures.

In fact, we can also interpret Robinson Arithmetic by a more direct method. In addition to the
singletons, among the finite sets given by the memberly relations are pairs, which can be defined
by: {a, b} = {x|x = a ∨ x = b}. Together with the definability of singletons, this allows us to
define ordered pairs as 〈a, b〉 = {{a}, {a, b}}, which in turn allows us to define equivalence of
cardinality among the finite sets in the usual way. Given the notion of cardinal equivalence we
make use of the standard definitions of union and cartesian products to give an interpretation of
arithmetic.

Either method leads to the result that memberly structures allow for the interpretation of an
essentially undecidable theory, and thus shows that (Comp2)+S5 is itself undecidable.
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2.3 Concluding Discussion

The model shows that (Comp2) gives rise only to a very weak set theory, since it is consistent
with the only sets being the finite and cofinite ones. The weakness of the set theory is naturally
attributed to the fact that membership is not a matter of necessity. In the model above, for any
pair of sets, it is possible that the one be a member of the other.

A direct strategy for resolving this problem would be to impose the requirement that mem-
bership be necessary, that is, to add the axiom x ∈ y → 2x ∈ y. But this leads immediately to
inconsistency: the instance for ϕ = x /∈ x is easily seen to be inconsistent in the very weak nor-
mal modal logic KD, axiomatized by replacing the axiom schema (T) in the modal logic T with
the schema (D): 2ϕ → 3ϕ. (A similar result is obtained if one adds “hybrid” operators such as
“actually” @; this leads to inconsistency no matter the logic of 2, since it allows us to define the
standard Russell set by instantiating (Comp2) on 2@¬x ∈ x.)

An apparently more promising approach is to use (2Comp2), which strengthens the mate-
rial biconditional in (Comp2) to a strict biconditional. This principle was the subject of Mints’s
original question, and it will be the focus of the remainder of the paper.

3 Inconsistency of (2Comp2)

Our first inconsistency result will use the following instance of (2Comp2):

(∃y)(∀x)2(x ∈ y↔ 2¬x ∈ x) (2Russell2)

Theorem 3.1. (2Russell2) is inconsistent in T.

Proof.

(1) (∀x)2(x ∈ R↔ 2¬x ∈ x)→ 2(R ∈ R↔ 2¬R ∈ R) Universal Instantiation
(2) 2(R ∈ R↔ 2¬R ∈ R)→ (R ∈ R↔ 2¬R ∈ R) (T)
(3) (R ∈ R↔ 2¬R ∈ R)→ (R ∈ R→ ¬R ∈ R) (T)
(4) (R ∈ R↔ 2¬x ∈ x)→ ¬R ∈ R 2, 3, PL
(5) 2(R ∈ R↔ 2¬R ∈ R)→ 2¬R ∈ R 4, RM
(6) (∀x)2(x ∈ R↔ 2¬x ∈ x)→ (R ∈ R↔ 2¬R ∈ R) 2, 3
(7) (∀x)2(x ∈ R↔ 2¬x ∈ x)→ (2¬R ∈ R ∧ (R ∈ R↔ 2¬R ∈ R)) 5, 6, PL
(8) (∀x)2(x ∈ R↔ 2¬x ∈ x)→ (2¬R ∈ R ∧ R ∈ R) 7, PL
(9) (∀x)2(x ∈ R↔ 2¬x ∈ x)→ (¬R ∈ R ∧ R ∈ R) 8, (T), PL

(10) ¬(∀x)2(x ∈ R↔ 2¬x ∈ x) 9, PL
(11) ∀R¬(∀x)2(x ∈ R↔ 2¬x ∈ x) Universal Generalization, 10

But (8) contradicts (2Russell2). QED
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In fact, Theorem 3.1 does not depend on special laws for the quantifier, as it may be seen as
an instance of the following general fact about the propositional fragment of the logic:

Proposition 3.2. If ` ϕ→ (ψ↔ 2¬ψ) then ` ¬2ϕ in T.

Proof.
(1) ϕ→ (ψ↔ 2¬ψ) (Assumption)
(2) (ψ↔ 2¬ψ)→ (ψ→ ¬ψ) T
(3) ϕ→ ¬ψ 1, 2, PL
(4) 2ϕ→ 2¬ψ 3, RM
(5) 2ϕ→ (ψ↔ 2¬ψ) 1, T
(6) 2ϕ→ (2¬ψ ∧ (ψ↔ 2¬ψ)) 4, 5, PL
(7) 2ϕ→ (2¬ψ ∧ ψ) 6, PL
(8) 2ϕ→ (¬ψ ∧ ψ) 7, T, PL
(9) ¬2ϕ 8, PL

QED

Letting (R ∈ R↔ 2¬R ∈ R) = ϕ and R ∈ R = ψ, we derive the contradiction for (2Comp2)
as follows:

(10) ¬2(R ∈ R↔ 2¬R ∈ R) Proposition 3.2
(11) ∃x¬2(x ∈ R↔ 2¬x ∈ x) 10, Existential Introduction
(12) ¬∀x2(x ∈ R↔ 2¬x ∈ x) 10, 11, Df∀
(13) ∀y¬∀x2(x ∈ y↔ 2¬x ∈ x) 12, Universal Generalization
(14) ¬∃y∀x2(x ∈ y↔ 2¬x ∈ x) 13, Df∀

In later proofs, we will provide the argument for the propositional fragment only; the steps for
introducing the quantifiers will be the same as above.

Note also that if we work in S4 and S5, Proposition 3.2 can be strengthened to:

Proposition 3.3. If ` 2ϕ→ (ψ↔ 2¬ψ) then ` ¬2ϕ in S4.

The reason is that using (RM), (T), (L4) and (Rep), one can derive the following rule in S4
(and hence S5):

From ` 2ϕ→ ψ infer ` 2ϕ→ 2ψ. (2 RM)

If we start from the assumption 2ϕ → (ψ ↔ 2¬ψ), in the above argument, at step (3) we
obtain 2ϕ → ¬ψ. In T this is weaker than (3) above, and is a dead end. But in S4 and S5,
we use (2RM) to obtain (4) as above, and the remainder of the proof follows as before. This
proposition will play an important role in the next sections where we reformulate (2Comp2)
using a different modality than 2 before the instance of ϕ.
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4 Inconsistency of (2Comp23)

Next we ask whether the following variant of (2Comp2)

(∃y)(∀x)2(x ∈ y↔ 23ϕ) (2Comp23)

can be consistently added to S4. We suspect Mints himself would have asked this and related
questions, had he seen the weakness of (Comp2) and our first contradiction using (2Comp2).
But in fact this new principle is also inconsistent, as we now show, once again by considering an
instance:

(∃y)(∀x)2(x ∈ y↔ 23¬x ∈ x) (2Russell23)

Theorem 4.1. (2Russell23) is inconsistent in S4.

Again, the theorem will follow from a proposition provable in the propositional fragment,
although this time the proof uses the full strength of S4. For note that the following is a law of
S4 (and hence S5):

2(ϕ↔ ψ)→ (χ↔ χ′) (Rep2)

where χ is like χ′ except that in the latter 0 or more instances of ϕ have been replaced by ψ, and in
no instances of ϕ or ψ within χ or χ′ are any free variables in those formulas bound. This differs
from ordinary (Rep), in which replacement in all contexts is licensed by the provable equivalence
of ϕ and ψ.

Proposition 4.2. If ` 2ϕ→ (ψ↔ 23¬ψ) then ` ¬2ϕ in S4.

Proof.
(1) 2ϕ→ (ψ↔ 23¬ψ) (Assumption)
(2) 2ϕ→ 2(ψ↔ 23¬ψ) 1, 2RM
(3) 2(ψ↔ 23¬ψ)→ (2ψ↔ 223¬ψ) K, PL
(4) 223¬ψ↔ 23¬ψ T, L4
(5) (2ψ↔ 223¬ψ)↔ (2ψ↔ 23¬ψ) 4, Rep
(6) 2ϕ→ (2ψ↔ 23¬ψ) 2, 3, 4, 5
(7) 2ϕ→ 2(2ψ↔ 23¬ψ) 6, 2RM
(8) 2ϕ→ (ψ↔ 2ψ) 1, 7, Rep2

(9) 2ϕ→ 2(ψ↔ 2ψ) 8, 2RM
(10) 2(ψ↔ 2ψ)↔ 2(¬ψ↔ 3¬ψ) PL, Df3
(11) 2ϕ→ (ψ↔ 2¬ψ) 1, 9, 10, Rep2

(12) ¬2ϕ 11, Proposition 3.3

QED

Theorem 4.1 now follows immediately.
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5 Inconsistency of (2Comp232)

Consider next whether the following further variant on (2Comp2)

(∃y)(∀x)2(x ∈ y↔ 232ϕ) (2Comp232)

can be consistently added to S4. Once again, we show that it cannot be.
We use the following instance of (2Comp232):

(∃y)2(∀x)(x ∈ y↔ 232¬x ∈ x). (2Russell232)

Theorem 5.1. (2Russell232) is inconsistent in S4.

Recall that S4 proves every instance of the following “reduction law”:

23ϕ↔ 2323ϕ. (Red23)

The theorem is a consequence of the following proposition.

Proposition 5.2. If ` 2ϕ→ (ψ↔ 232¬ψ) then ` ¬2ϕ in S4.

Proof.
(1) 2ϕ→ (ψ↔ 232¬ψ) (Assumption)
(2) 2ϕ→ 2(ψ↔ 232¬ψ) 1, 2RM
(3) 2(ψ↔ 232¬ψ)→ (2ψ↔ 2232¬ψ) K, PL
(4) 2232¬ψ↔ 232¬ψ T, L4
(5) (2ψ↔ 2232¬ψ)↔ (2ψ↔ 232¬ψ) 4, Rep
(6) 2ϕ→ (2ψ↔ 232¬ψ) 2, 3, 4, 5
(7) 2ϕ→ 2(2ψ↔ 232¬ψ) 6, 2RM
(8) 2ϕ→ (ψ↔ 2ψ) 1, 7, Rep2

(9) 2ϕ→ 2(ψ↔ 2ψ) 8, 2RM
(10) 2(ψ↔ 2ψ)↔ 2(¬ψ↔ 3¬ψ) PL, Df3
(11) 2ϕ→ (ψ↔ 2323¬ψ) 1, 9, 10, Rep2

(12) 2ϕ→ (ψ↔ 23¬ψ) 11, Red23

(13) ¬2ϕ 12, Proposition 4.2

QED

Theorem 5.1 now follows immediately.

6 Duality Between Modalities

S4 is known to have fourteen modalities (see, e.g., Chellas 1980 for proofs), which we can divide
into positive and negative, as follows:
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Positive Negative
¬¬ ¬
2 2¬
3 3¬

23 23¬
32 32¬

232 232¬
323 323¬

Starting from the pattern exhibited by our three contradictions, one might wonder whether,
given a modality M in the above list, (2RussellM) is guaranteed to be inconsistent, but that is
not so. For any of the negative modalities, (2RussellM) is in fact consistent, as can be shown by
the one-element, one-world model in which R is the only element of the domain, R ∈ R is true
at the unique world, and the accessibility relation is universal.

But this does not show that the more powerful principle (2CompM) are consistent for any
of the negative modalities or for the as-yet-untouched positive ones. In fact, it is clear that if
for a positive modality M, (2RussellM) is inconsistent, then since (2RussellM) is an instance of
(2CompM¬), that principle must also be inconsistent. (2Comp¬¬) entails naive comprehension
by the modal axiom (T) and are inconsistent by Russell’s original paradox. The second, fourth,
and sixth of the above positive modalities were shown to be inconsistent in S4 by Theorems 3.1,
4.1, and 5.1, respectively. Thus for each of the corresponding negative modalities M, (2CompM)
is also inconsistent.

We now turn to the remaining positive ones. Here we observe that if for a modality M,
(2CompM) can be shown to be inconsistent by instantiating on an atomic formula or its nega-
tion ϕ, then (2Comp¬M¬) is also inconsistent. For suppose we have a proof that an instance of
(2CompM) leads to inconsistency using a formula ϕ. Then consider the instance of (2Comp¬M¬)
which uses the same ϕ, that is (moving negations):

(∃y)(∀x)2(¬x ∈ y↔ M¬ϕ) (2CompDual)

Define x /∈ y by x /∈ y ↔ ¬x ∈ y, and write ϕ−1 for the formula resulting from replacing ∈ in
ϕ with /∈. Since ϕ is either atomic or the negation of an atomic sentence, we have ` ϕ ↔ ¬ϕ−1,
licensing intersubstitution in all contexts. Thus (2CompDual) can be written:

(∃y)2(∀x)(x /∈ y↔ Mϕ−1). (2CompDual+)

But given that the relevant instance of (2CompM) led to inconsistency for ∈, (2CompDual+)
will lead to inconsistency by the same argument applied to /∈.

Since the remaining three positive modalities are simply the duals of those shown to be in-
consistent by Theorems 3.1, 4.1, 5.1, this observation allows us to put an end to one line of ques-
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tioning. If M is any of the fourteen standard modalities in S4, then (2CompM) is inconsistent.
And if M is one of the seven positive modalities, then (2RussellM) is inconsistent.

7 Conclusion

We now turn to three proposals for future work: one, based on logics which do not validate the
converse Barcan formula; a second based on replacing the modal axiom schema (T) with the
weaker (D); and a third, based on the Gödel-McKinsey-Tarski translations of naive comprehen-
sion into a modal language.

7.1 Converse Barcan Formula

As we noted in Section 2, the proof system stated above allows us to derive the Converse Barcan
Formula (CBF):

(1) ∀xϕ→ ϕ predicate logic
(2) 2∀xϕ→ 2ϕ (RN), (K)
(3) 2∀xϕ→ ∀x2ϕ (∀2)

In the Introduction, we noted that CBF can be used in deriving (2CompM) from the principle:

(∃y)2(∀x)(x ∈ y↔ 2ϕ). (2∀Comp2)

Without the CBF, the principles may have incommensurable strength. Thus it is natural to won-
der whether our inconsistencies for (2CompM) depends on the derivability of CBF. In fact, as
we now show, the results for (2CompM) do not. Interestingly, however, there are still open ques-
tions concerning the consistency of (2∀CompM) for some modalities M.

We use the proof system of (Hughes & Cresswell, 1996, Ch. 16), letting Ex be an abbreviation
for ∃y(y = x) (the “existence predicate”) (for further discussion see Scott (1967) and Scott (1979)).
Crucially, universal instantiation is restricted as follows:

∀xϕ→ (Ey→ ϕ[y/x]), (RestGen)

Call the resulting system “Free T” (and similarly for extensions of T).
Note that the following laws and rule can still be derived in this system:

∀xEx (UE)

∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ) (∀ →)

If ` ϕ then ` ∀xϕ (UG)

We first show that if M is a modality of S4, (2CompM) is inconsistent:
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Theorem 7.1. If M is any positive modality of S4, then (2RussellM) is inconsistent in Free S4.

Proof.

(1) ¬2(R ∈ R↔ M¬R ∈ R) Propositions 3.2, 4.2, 5.2, Duality
(2) ∀x2(x ∈ R↔ M¬x ∈ x)→ (ER→ 2(R ∈ R↔ M¬R ∈ R)) (RestGen)
(3) ER→ ¬∀x2(x ∈ R↔ M¬x ∈ x) 1, 2, PL
(4) ∀y(Ey→ ¬∀x2(x ∈ y↔ M¬x ∈ x)) 3, UG
(5) ∀yEy UE
(6) ∀y¬∀x2(x ∈ y↔ M¬x ∈ x) 4, 5, ∀ →, PL
(7) ¬∃y∀x2(x ∈ y↔ M¬x ∈ x) 6, Df∀

which contradicts (2CompM). Inconsistency for the negative modalities follows from the obser-
vations of the previous section. QED

The above argument can also be used to show that (2Comp2) is inconsistent in Free T, by
invoking Proposition 3.2 in step (1).

Next, we show that (2∀Comp2) is inconsistent in Free T, by considering the following in-
stance of that principle:

∃y2∀x(x ∈ R↔ 2(Ex → x /∈ x)). (2∀RussellE2)

Theorem 7.2. (2∀RussellE2) is inconsistent in Free T.

Proof.

(1) ∀x(x ∈ R↔ 2(Ex → x /∈ x))→ (ER→ (R ∈ R↔ 2(ER→ R /∈ R))) RestGen
(2) (R ∈ R↔ 2(ER→ R /∈ R))→ (R ∈ R→ (ER→ R /∈ R)) (T)
(3) (R ∈ R→ (ER→ R /∈ R))→ (ER→ R /∈ R) PL
(4) ∀x(x ∈ R↔ 2(Ex → x /∈ x))→ (ER→ R /∈ R) 1-3
(5) 2∀x(x ∈ R↔ 2(Ex → x /∈ x))→ 2(ER→ R /∈ R) 4
(6) 2∀x(x ∈ R↔ 2(Ex → x /∈ x))→ (ER→ (R ∈ R↔ 2(ER→ R /∈ R))) 1, (T)
(7) 2∀x(x ∈ R↔ 2(Ex → x /∈ x))→ (2(ER→ R /∈ R) ∧ (ER→ R ∈ R)) 5, 6
(8) 2∀x(x ∈ R↔ 2(Ex → x /∈ x))→ ((ER→ R /∈ R) ∧ (ER→ R ∈ R)) 7
(9) 2∀x(x ∈ R↔ 2(Ex → x /∈ x))→ ¬ER 8
(9) ∀R(ER→ ¬2∀x(x ∈ R↔ 2(Ex → x /∈ x))) 9, UG

(10) ∀RER UE
(11) ∀R¬2∀x(x ∈ R↔ 2(Ex → x /∈ x)) 9, 10, (∀ →)
(12) ¬∃R2∀x(x ∈ R↔ 2(Ex → x /∈ x)) 11

QED

S5 proves every instance of the schema 2ϕ↔ 32ϕ; hence there is an instance of (2∀Comp32)
which is provably equivalent to (2∀RussellE2), and thus for all positive modalities in Free S5,
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(2∀CompM) is inconsistent. We leave the consistency of (2∀CompM) for the modalities in Free S4
other than 2 for future work.

7.2 Replacing (T) with (D)

The results of this paper have been confined to logics which extend the modal system T. It is
natural to wonder whether the impossibility results can be avoided by moving to systems in
which (T) is weakened. Systems which do not contain KD are of little interest, since they are
valid in “dead end” worlds and the model with a single such world together with a domain
which contains a universal set is a model of both (2Comp2) and (Comp2); thus these principles
are trivially consistent in these logics.

A more promising approach is to replace (T) by (D) (2ϕ→ 3ϕ). This weakening of the logic
is suggested by a particular “fictionalist” approach to the philosophy of mathematics. Motivated
by the idea that ZF and other foundational theories of mathematics commit themselves to an
objectionably Platonist ontology, some have argued that mathematics should be seen as a par-
ticular kind of fiction, where the fiction is understood to contain anything deducible from what
is already part of the fiction. We may formalize this theory using our modal language, by inter-
preting 2 as “according to the fiction” or “it is true according to the fiction that”. Since fictions
need not be true, the principle (T) is inappropriate to this interpretation. So one might wonder
whether a fictionalist of this kind can provide the foundations for mathematics using a naive
comprehension principle along the lines of (2Comp2). We here simply report our progress on
this question. In unpublished work, we have shown a series of inconsistency results for exten-
sions of KD and one consistency result, for the logic KDDc, where (Dc) is the axiom schema
3ϕ→ 2ϕ.

7.3 Gödel-McKinsey-Tarski Translation of Naive comprehension

Our work in this paper has been guided by an interest in the simplest modal comprehension
principles. More complex modal principles may nevertheless have simple motivations. The Gödel-
McKinsey-Tarski translation of naive comprehension is not our principle but the following:

23(∃y)2(∀x)2(2x ∈ y↔ 2ϕ). (CompGMT)

That principle is inconsistent in S4 by the inconsistency of naive comprehension in intuitionistic
logic. In fact, we can strengthen this result, by simply considering the Gödel-McKinsey-Tarski
translation of the Russell set:

23(∃y)2(∀x)2(2x ∈ y↔ 2¬2ϕ). (RussellGMT)

Proposition 7.3. (RussellGMT) is inconsistent in T.
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Proof.

(1) ∀x2(2x ∈ R↔ 2¬2x ∈ x)→ (2R ∈ R↔ 2¬2R ∈ R) ∀-out
(2) ∀x2(2x ∈ R↔ 2¬2x ∈ x)→ ¬2R ∈ R 1, T, PL
(3) 2∀x2(2x ∈ R↔ 2¬2x ∈ x)→ 2¬2R ∈ R 2, RM
(4) 2∀x2(2x ∈ R↔ 2¬2x ∈ x)→ 2R ∈ R 1, 3, PL
(5) ¬2∀x2(2x ∈ R↔ 2¬2x ∈ x) 2, 4, PL
(6) 22∀y¬2∀x2(2x ∈ y↔ 2¬2x ∈ x) RN, ∀-intro

QED

This result raises a third question which we will leave for future work. If we consider the
non-modal propositional logic generated by taking the theorems of some modal system Σ which
are also in the image of the Gödel-McKinsey-Tarski translation, then the consistency of Σ+
(CompGMT) would imply the consistency of naive comprehension in the logic generated as
described. Perhaps modal model constructions such as the one in the previous section could be
used to show the consistency of naive comprehension in sub-intuitionistic logics. More gener-
ally the study of sub-intuitionistic logics generated in this way, and the correspondence between
modal axioms of the translation and non-modal axioms of the pre-translated logic seems an in-
teresting issue which we will also leave for future work.

For now, we close by recalling that the axiomatic set theory obtained by adding (Comp2) to
S5 is too weak to form the foundation for mathematics. (2Comp2) was certainly more promis-
ing, but as we have seen at length, it is inconsistent in T, while all of its close cousins are also
inconsistent in S4 (and hence S5). At least for the modal logics considered in this paper, the
answer to the question of our title is definitively “no”.
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