Diplomarbeitsprasentationen der Fakultat fur Informatik

FAKULTAT FUR !NFORMATIK

Musical Instrument Separation lf k',
Technische Universitat Wien
Institut fur Softwaretechnik und Interaktive Systeme

Arbeitsbereich: Information and Software Engineering Group
Betreuer: Ao.Univ.-Prof. Dr. Andreas Rauber

Magisterstudium

Intelligente Systeme Andrei Grecu

andrei.grecu@aon.at

Goals and Applications

Main Goal: Given audio data containing music, separate all playing Instruments

Sub Goals

 Template Based Approach
* Find all Instrument onsets
* Find all tones
« Synthesize each Instrument into an audio file, using its onsets and tones

instrument separation * Feature Histogram Based Approach

 Find all clusters in the feature histogram
 Classify each frequency in the Input according to its cluster

The C++ implementation of the three algorithms was created along - Synthesize the frequencies of each class into a separate audio file

with this thesis as a collection of programs collectively called INEX

for INstrument EXtraction. Applications: remixing, editing, denoising, automatic transcription

Direct Template Matching Histogram Based BSS Iterative Template Matching

DTM HSBSS . ITM
Idea Observations

Observations
« Use an easily visualizable feature space
» Use stereo cues for separation
* Work in the frequency domain

 Direct Template matching has difficulties finding the
correct onsets

* Music consists of a limited number of tones
» Tones repeat during song duration
« Same tone sounds approximatively the same each

time it is repeated Idea

Histogram

« Same idea as DTM
* This time let onset vector self-organize

Idea * Visualization of the feature space

« Use inter-channel magnitude phase for the x-axis
* 0° means frequency exists only in right channel
* 45° means equal magnitude in both channels
* 90° means frequency exists only in left channel
« Use inter-channel time shift for the y-axis
« Use magnitude as intensity of each bin
« Use frequency as color (red ~ low freq., blue ~ high freq.)

Fig. 1: a) good histogram, b) no time-shift information, c) high reverberation, d) mono with stereo sfx

Clustering

« Use templates to model tones
» Use the repetitions to separate tone from concur-
rently playing instruments

i s e
- PO e
o st ol oo A B o0 A B o
- O L

R

Templates

Steering Vector

» Let onsets happen at each time sample

* Onsets become weights, therefore onset vector
becomes steering vector

» Good solutions contain only few non-zero weights

Algorithm

* |terate over synthesizing and adaptation steps
until convergence

e Synthesizing
« Convolve steering vectors with templates

Onset Detection « Use a radial basis function network (RBFN) to estimate colors

« Segment histogram using decision boundaries from trained RBFN « Minimize synthesizing error by adapting
» Classify frequencies according to segment they fall into steering vector and template

e Adaptation

* Find template occurences
* Needs to be at least sample-accurate

« Can be done using fast correlation
 Peaks in correlation result are filtered
* to have values above some treshold

* to be further apart than some minimum interval
 to occur in both audio channels at approxima-
tively the same time

» Use resilient backpropagation (RPROP)

» Use additional non-sparseness error function
for steering vector to encourage sparse solu-
tions

Fig. 2: a)-d) RBFN segmentation of correpsonding histograms shown in Fig. 1a-1d

R h
Template adaptation esynthesis

» Create a new spectrum for each class consisting only of its associated
frequencies
* Transform spectra back to time domain

« Adapt templates to approximate the audio data at
the onsets where they occur
« Use Newton's method for iterative adaptation

bt Uh [

Fig. 3: 1/50 sec. long segment of a steering vector

Problems

Resynthesis Refinements

« Time shifts become ambiguous above a certain frequency

* Modern stereo recordings have little inter-chan. time shift information
« Histogram practically becomes one line (Fig. 1b, 2b)

« Reverberation causes cluster smearing (Fig. 1c, 2c)

« RBFN shows poor estimation performance

Evaluation

Used corpora: BASS-dB*, IS, ISMIRgenre*, RWC* | ress

Our own corpus, the Instrument Separation (IS) corpus contains: .
0 . ‘ | [

S Max. dB SNR Mean dB SNR

* Render each template at its offsets

* Not implemented now: templates belonging to the
same instrument have to be grouped together be-
fore rendering

Direct Template Matching

 Calculate templates exactly, use RPROP only for
steering vector

« Work on upsampled input for less high frequency
damping

* Implement missing tone clustering part
« Move concept to frequency domain, better decorrelation expected
» Redesign initialization procedure

 Binaural recordings
« Recordings with reference tracks

 Module (MOD) files, decomposed into individual tracks Results

Histogram Based BSS
« HSBSS separation performance 4x higher than baseline

Subjective evaluation criteria _ | _
« Baseline quality score almost as high as HSBSS

« Use a time-shift disambiguation heuristic to minimize cluster spreading
« Detect number of clusters automatically

- Find new features (dimensions) for the histogram * Separation performance ,S" (0-5)

- Remaining signal quality ,Q* (0-5) * DTM and HSBSS almost equal in terms of dB SNR

» Best separation values per title have 4x higher SNR than
the mean values

« HSBSS also has objectively 4x higher SNR performance
than baseline

Iterative Template Matching Objective error measure: signal to noise ratio (SNR)

* Find better non-sparseness cost function

Baseline (BL), produces sum and difference channel (L+R, L-R) *) Only parts of the corpus used




