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EXPERIMENTAL EVALUATION & BENCHMARK STUDY
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A multiple sequence alignment¹ refers to the alignment of
three or more molecular sequences (DNA, RNA or protein), 
aligned such that the similarity between the sequences is
maximized.

MULTIPLE WHAT?

Multiple sequence alignments form the basis to address
numerous fundamental questions arising in biology. 
Many such questions stem from the research field of
phylogenetics¹.

Can we devise a framework that is
able to produce semantically meaningful 
representations of fixed size, suitable as 

input for a task in phylogenetics, for
variable-sized multiple sequence 

alignments?

WHY LEARN REPRESENTATIONS?
Inferring phylogenies from multiple sequence alignments is
hard²⁻³, and remains inefficient, despite heuristics, for larger
alignments. Data-driven learning approaches give hope to
speed up this process. Most machine learning algorithms
have some input size constraint. The computation of
fixed-size representations constitutes a crucial first step.

PROBLEM STATEMENT

IT WORKS, WHAT'S NEXT?

PHYLOGENETICS
Phylogenetics studies the evolutionary 
history among biological entities. The 
evolutionary relationships between 
a set of entities are typically depicted
in a phylogenetic tree.

The reconstruction of a phylogenetic
tree is based on some observable 
heritable traits of the given entities,
such as molecular sequence data (i.e. 
an alignment of related sequences).
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We conducted systematic experiments to assess the representation learning framework. The phylogenetic
task of the selection of the model of sequence evolution¹ (mSE) serves as learning objective for a proof of
concept. We simulated alignments evolving under up to four different mSEs (JC, K2P, F81 and GTR). 

1. M. Steel. The phylogenetic handbook: a practical approach to 
phylogenetic analysis and hypothesis testing (2010), 2. W.H.E. 
Day, D.S. Johnson, and D. Sankoff. The computational complexity 
of inferring rooted phylogenies by parsimony (1986) and 3. B. 
Chor and T. Tuller. Maximum likelihood of evolutionary trees is 
hard (2005). 

The results of our empirical evaluation are promising.
What are possible next steps?

WHAT DID WE LEARN? HOW DO WE DO?

We compared our classifier siamSE
with the established methods¹ for
model selection AIC, AICc and BIC.

The learned representations are
semantically meaningful, given 
our notion of semantics.

Performance generally improved
with the size of the alignment,
the framework thus seems to be
able to maximize the extracted
information.
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t-SNE of alignments evolved under two
(above) and three (below) mSEs show
that similar alignments are close, while
dissimilar alignments are distant to
each other in the embedding space.

siamSE ranks second best on average
with 94.5% accuracy.
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REPRESENTATION LEARNING FRAMEWORKWHAT?

Handle alignments of variable
sizes

Learn semantically meaningful
fixed-size representations

Maximize the amount of
extracted information

(a)

(b)

(c)

We devised a framework which has 
the ability to:

We define semantics for alignments 
implicitly by means of similarity, i.e. 
similar alignments should be 
embedded close to each other, while 
dissimilar alignments should be 
embedded distant from each other.

1. Include more complex models of sequence 
evolution

2. Provide more formal notions and guarantees

3. Learn representations for a different 
phylogenetic task, such as e.g. tree topology

4. Explore other approaches for this problem

5. Compile benchmark dataset

The framework comprises three 
main modules, which implement 
conditions (a) – (c):

(1) Graph transformation module

(2) Embedding module

(3) Training module

HOW?

(1) transforms a given alignment into 
a graph. (2) computes a fixed-size 
representation using graph attention 
layers with average pooling as graph 
readout, followed by fully-connected 
layers. (3) implements the training 
procedure using a siamese neural 
network with contrastive loss 
function. Training is done with pairs.
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