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Introduction

PROBLEM DEFINITION

* The studies on this topic are related to the cocktail
party problem (refers to the remarkable ability of the
brain in selective attention)

GOAL

» Goal is to use an intelligent system to automatically
detect if any of the sound events within the given
acoustic signals

APPLICATION AREA

 Military and security/surveillance applications
» Long term remote monitoring

» Sound indexing

* Smart home/ cities systems

SmartHome

Related Work

» Use of Bi-directional Long Short Term Memory

Methodology

MFCC Mel- Spectrogram

CONTRIBUTION OF THE PROJECT

Utilizing multiple deep learning architecture on Sound
Event Detection task (SED)
» Long Short Term Memories (LSTMs)
 Bi-Directional LSTMs
+ Convolutional Neural Networks

Comparing the performance of deep learning
architectures on three input representation techniques

» Mel Frequency Coefficient Cepstrals

* Constant-Q Transforms

* Log-Amplitude Mel-Spectrograms

Generalizing the model using techniques such as Data
augmentation and dropout

Evaluating the models on 2 different datasets provided
by DCASE community

* Monophonic Rare Sound Event Detection

» Polyphonic Real Life Street Sound Event Detection

Sound Event Detection System

extracts the full content in an input sequence [1] e ~
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Visualization of the Experimental Results
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Conclusions

» Deep Learning Appoaches are well suited for SED tasks

» Data Augmentation reduced the False Positive Rates
* Mel spectrograms are more appropriate for Deep Neural Networks

» Polyphonic SED requires more advanced signal processing

Future Work

* Apply Hybrid models such as C-RNN
which have shown robustness on feature

learning.

* Apply attention layer to improve model‘s

performance in SED

* Investigation of Multi-channel Audio

Analysis
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