

Computational Intelligence

Diplomarbeitspräsentation

lfS

Sound Event Detection with Deep Neural Networks

Seyedehanahid Naghibzadehjalali

Technische Universität Wien Information System engineering Arbeitsbereich: Information and Software Engineering group Betreuer: Ao.Univ.-Prof. Dr. Andreas rauber

Introduction

PROBLEM DEFINITION

Masterstudium:

• The studies on this topic are related to the cocktail party problem (refers to the remarkable ability of the brain in selective attention)

GOAL

· Goal is to use an intelligent system to automatically detect if any of the sound events within the given acoustic signals

APPLICATION AREA

- Military and security/surveillance applications
- Long term remote monitoring
- Sound indexing
- Smart home/ cities systems

69

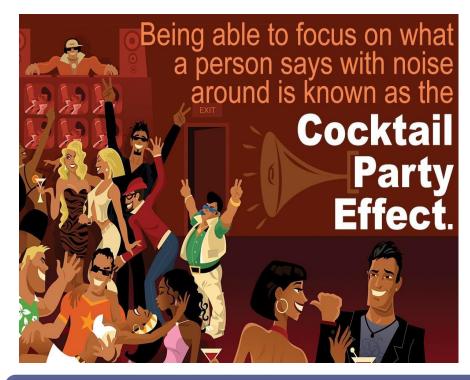
Related Work

 Use of Bi-directional Long Short Term Memory extracts the full content in an input sequence [1]

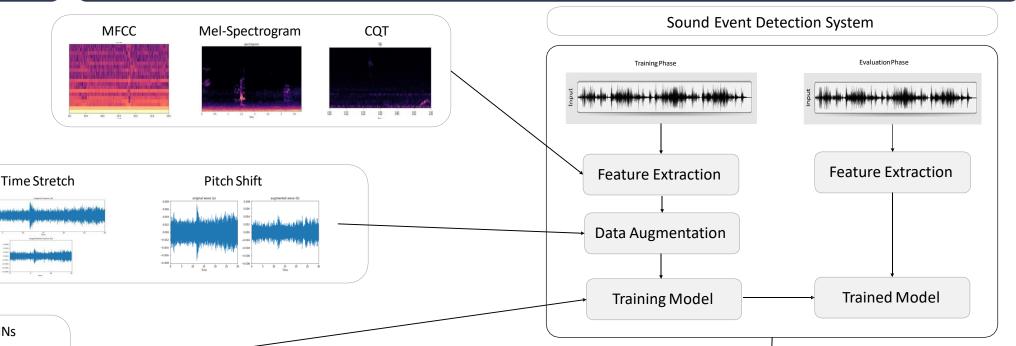
•Use of Mel-band energy as features for Deep Neural Networks enhanced the performance of model [2]

 Audio manipulation for data augmentation improves the reliability of the prediction [3]

LSTMs

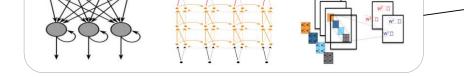


Methodology



CONTRIBUTION OF THE PROJECT

- Utilizing multiple deep learning architecture on Sound Event Detection task (SED)
 - Long Short Term Memories (LSTMs)
 - Bi-Directional LSTMs
 - Convolutional Neural Networks
- Comparing the performance of deep learning architectures on three input representation techniques
 - Mel Frequency Coefficient Cepstrals
- Constant-Q Transforms
- Log-Amplitude Mel-Spectrograms
- Generalizing the model using techniques such as Data augmentation and dropout
- Evaluating the models on 2 different datasets provided by DCASE community
 - Monophonic Rare Sound Event Detection
 - Polyphonic Real Life Street Sound Event Detection



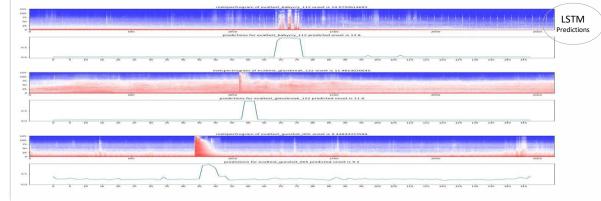
Bi-LSTMs

CNNs

Visualization of the Experimental Results

MODEL EVALUATION (Rare Sound Event Detection)

	С	ompa	arison	of D	ifferent In	put Repres	enta	ation (M	odel : l	LSTM	ls)			
Model Mel-Sp				ectro	gram	CQT				MFCCs				
Classes	E		Err		F1	Err		F1		Err		F1		
Babycry		0.	.28	77.35%		0.27		73.26%		0.39		76.22%		
Glassbreak	0.		.45	79.43%		0.71		29.48%		0.74		67.37%		
Gunshot	0.		.54	68.52%		0.65		44.44%		0.46		61.40%		
Average		0.42		7	′5.10%	0.54		49.06%		0.53		68.33%		
Model	Ba	aseline (MLP)		>)	LS	STM		BLSTM		C		CN	NN	
Classes	E	rr	F1		Err	F1		Err	F	1	Err		F1	
Babycry	0.	67	72.00%		0.27	77.84%		0.40	69.43%		0.24		83.17	
Glassbreak	0.	22	88.50%		0.34	81.05%		0.33	76.27%		0.24		84.17	
Gunshot	0.	69	57.40%		0.53	69.53%		0.69	41.47%		0.44		58.04	
Average	0.	53	72.70%		0.38	76.16%		0.47	62.34%		0.30		75.12	

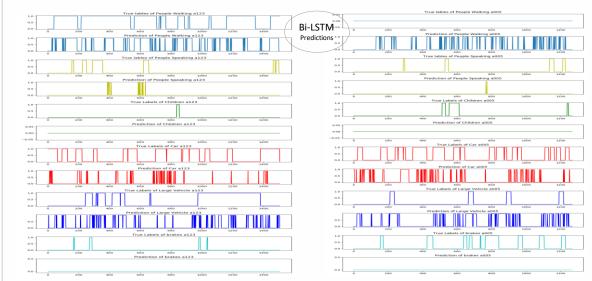


Conclusions

- Deep Learning Appoaches are well suited for SED tasks
- Data Augmentation reduced the False Positive Rates
- · Mel spectrograms are more appropriate for Deep Neural Networks
- · Polyphonic SED requires more advanced signal processing

MODEL EVALUATION (Real Life Street Sound Event Detection)

Model	Baselir	ne (MLP)	L	STM	BLS	STM	CNN		
Classes	Err	F1	Err	F1	Err	F1	Err	F1	
People Walking	1.44	33.5%	0.89	13.51%	0.91	15.94%	0.92	9.29%	
People Speaking	1.29	8.6%	0.92	12.21%	0.95	6%	0.97	2.71%	
Children	2.66	0.0%	1	0.0%	0.99	1.11%	0.98	2.88%	
Car	0.76	65.1%	0.63	42.35%	0.7	34.35%	0.74	28.82%	
Large Vehicle	1.44	42.7%	0.87	14.66%	0.91	9.71%	0.84	16.38%	
Brake	0.98	4.1%	1.	0.0%	0.97	3.28%	1	0.0%	
Average	0.93	42.08%	0.89	41.02%	0.93	31.72%	0.77	28.31%	



Future Work

- Apply Hybrid models such as C-RNN which have shown robustness on feature learning.
- · Apply attention layer to improve model's performance in SED
- Investigation of Multi-channel Audio Analysis

References

[1] Hayashi T; Watanabe S; Toda T; 2016. Bidirectional Istm-hmm hybrid system for polyphonic sound event detection.

[2] Adavvane S; Parascandolo G; Heittola T; Virtanen T; 2016. Sound event detection in multichannel audio using spatial and harmonic features, DCASE2016.

[3] Cui X; Goel V; Kingsbury B; 2015. Data augmentation for deep neural network acoustic modelling, TASLP15.