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e.g. as semantic argument or as deviation in a particular calculus. The latter can be represented in sequent-calculus and con-
sists of several rules. One of them is the cut-rule, which is not necessarily occuring in a derivation, but can be very helpful for

compressing such proots. Proofs with cu

a theorem. This thesis implements a met

'mplementation of a method for
introducing quantitied cuts based on

[1] Algorithmic cut-introduction

[2] Algorithmic compression of finite
tree languages by rigid acyclic
grammars

Integrated into an already existing
architecture for proofs (GAPT) in
Scala.

Compared to an existing approach,
able to infroduce a single quantitied

cuft.

e single-cut and the
many-cuts approach were tested by
running a large set of experiments,
including ..

.. primitive proof sequences

.. proofs from particular libraries

[TPTP, etc))

The pertormance was not improved
signiticantly.

The possibility to infroduce more
than one cut at a time

represents a major improvement in
the field of cut-introduction.

[ 1] Stefan Hetzl, Alexander Leitsch, Giselle Reis, and Daniel-
Weller. Algorithmic infroduction
of quantitied cuts. Theoretical Computer Science, 549, 2014,

[2] Sebastian Eberhard and Stefan Hetzl. Algorithmic com-
oression of finite tfree languages by
rigid acyclic grammars. 2014.

s in sequent calculus contain lemmas which can give deeper insights intfo the meaning of
hod Tor infroducing several quantitied cuts in a cut-free proof in sequent caculus.
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start at end sequent

of a cut-free proot

) extract Herbrand sequent and
infroduce artiticial function symbols

generate sutficient
set of keys

transform to
MinCostSAT

formulation
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Compressed proot

with infroduced
CUTS
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