

Given a 2D image and the corresponding

enables generation of novel views that

Novel views enable (1) generation of

BUT: Errors in depth map affect the

quality of the resulting novel views

Evaluate the effects of depth map

post-processing on the resulting quality

3D content and (2) control over the 3D

Evaluation of Depth Map Post-processing Techniques for Novel View Generation

Masterstudium: Medieninformatik

Problem:

Goal:

depth impressoin

of novel views

Matej Nezveda

Technische Universität Wien Institut für Softwaretechnik und Interaktive Systeme Arbeitsbereich: Interactive Media Systems Betreuerin: ao.Univ.-Prof. Dipl.-Ing. Mag. Dr. Margrit Gelautz Mitwirkung: Dipl.-Ing. Mag. Nicole Brosch

MOTIVATION Depth Map 2D Image near depth map, Depth-Image-Based Rendering [1] capture synthesized viewpoints of a scene Novel View 1 Novel View 2 Novel View 3 Novel View 4 Novel View 5

APPROACHES

Names

- Bilateral Filter (BF)
- Joint Bilateral Median Filter (JBMF)
- Weighted Mode Filter (WMF)
- Guided image Filter (GF)
- Guided image Filter+Weighting (GF+W)
- Foreground Protecting Filter (FPF)
- No Post-processing (NP)

Characteristics

- Guidance image
- Local smoothing
- Local statistics
- image

- X X X X - -X - - X X X -- X X - - -

Operates on whole x x x x x - -

EVALUATION METHODOLOGY

Part 2:

Subjective evaluation

Zoom-Ins: Artifacts in Novel View

Part 1: Content generation

Depth post-processing D Depth Map \Box Set of **Novel Views** 2D Image

Workflow

Pair Comparison

Method:

- Pair comparison methodology [2]
- Three choice options:
 - (1) A is better
 - (2) B is better
 - (3) Same

Part 3: Objective evaluation

Objective Quality Metrics

Method:

- Ten objective quality metrics [3]
- Estimation of accuracy:
 - (1) Automatic assessment of quality
 - (2) Correlation computation between subjective and objective scores

Method:

- Dataset with six stereopairs
- Workflow:
 - (1) Generate depth maps
 - (2) Post-process depth maps

(3) Generate set of novel views

Subjective evaluation Bilateral filter and guided image filter achieve overall best results [4] WSNR-100 NQM · **IFC** 80 score UQI VIFP 60 Quality VIF **JBMF** VSNR -40 **GF** MSSIM-GF+W SSIM **WMF** PSNR-**FPF Normalized Quality Scores**

Objective evaluation

All metrics have a correlation below 50 %

CONCLUSION

- Edge-preserving filters based on local smoothing achieve best results
- Depth range within a scene has strong impact on effectiveness of depth post-processing
- Objective metrics under investigation are not sufficient to predict quality of novel views

Future work:

 Evaluation of depth map post-processing on stereoscopic video content

RESULTS

- [3] E. Bosc, P.L. Callet, L. Morin, and M. Pressigout. Visual quality assessment of synthesized views in the context of 3D-TV. In: 3D-TV System with Depth-Image-Based Rendering: Architectures,
- Techniques and Challenges. Springer, 2013 [4] M. Nezveda, N. Brosch, F. Seitner and M. Gelautz. Depth map post-processing for depth-image-based rendering: a user study, In: Proc. SPIE 9011, Stereoscopic Displays and Applications XXV, 2014