)

oL /OO0 LOOoOoOO0 — = 2\ N, ' ° N) o /OO0 LG Oo0000

Diplomarbeitsprasentationen der Fakultat fur Informatik
Shape-Based Alias Analysis

FAKULTAT FUR INFORMATIK for Object-Oriented Languages

)
B

comp\ii(:ls
Elilsfuages

Masterstudium _ Technische Universitat Wien
: : : Viktor Paviu Institut fir Computersprachen
Software Engmeermg / Internet Computlng Arbeitsbereich: Programmiersprachen und Ubersetzerbau

Betreuer: Dipl.-Ing. Dr. Markus Schordan

NN el N~ WA N 0

QUESTION \

N~ — | — _— _— \ \NC_ Il J/{[J] L | 0 — _

OVERVIEW

we statically approximate the heap to find aliases required for analyses and the generation of efficient code

at compile-time, shape
##define NULL ((List*)0) analyses discover the
structure of objects
later allocated in the

to create efficient code, a compiler needs precise information about the source program (
class List { program analyses gather this information at compile-time
public:
List(int pValue) {
next = NULL;,
value = pValue,

using this information a program can be made faster, smaller, or less power-consuming

a-~iia} {p} {}

}
’ List* next;,
int value;,

Iy ¢
D g interprets shapegraph]]]] y
to find expressions pointers are very common in object-oriented languages, but they greatly reduce what
: . x)) :

> int main(int arge, char **argv) { rhat refer to the same can be found out by program analyse -> good pointer alias analyses are required
- ocation
B List *a = new List (1), shape analyses are the most precise pointer analyses available
- List *t = new List (2);, i : i
5 a-Snext = t- (2) relative quality of two shape analyses SRW* & NNH** is yet unknown
- t->next = new List(3); (a->next) = (p)

t = NULL; (a->next->next) = (p->next)

(a->next->next->next) = (p->next->next)
! List *p = a->next;
p->next->value = 0, // Stmt A
a->next->next->value = 42; Stmt B . : :
// :AQ'QL;Z'ELF:;:E?S possibly being dereferenced? implemented parametrized versions of both shape analyses for C++
- int x = p->next->value; // Stmt C -> compiler issues a warning derived 32 variations of shape-based alias analyses
- - are p->next->next and a->next->next->next must-aliases?]]] o
) return 0 > Stmt A is a definition without use and can be eliminated experimentally found sweet spots in runtime/precision tradeoff
- are p->next->next and a->next->next->next no aliases? . o . .

- } recommends two variations: for speed, for precision

-> Stmt B is independent of Stmt A and C, and could be parallelized or
reordered, possibly helping with register-allocation, for example

recmmend a :L\a’pc-édscd al/as analyc/c var/ant

- Results of different shape
analyses are hard to compare
directly

pregent thec/c at <P/'1.63 2009 e

v - BE .
1
L AS o\ =4 7 OlAa;, 00721 | VAL \ S|
COMPARISON
)0 0 O) O | i
é NNH
7 7 7 * *
‘ SRW int main(int arge, char *rargv) { The shape analysis described by '
thChd SRw and MNMH te bLe /'htcr‘-'pr‘bctaur‘dé m The Shape analysis by | List *a = new List (1); Nielson, NiEISon, and Hankin in
L L cal L ¢ w Sagiv, Reps and Wilhelm*) o List *t = new List(2); «Principles of Program Analysis”**)
— B _epert aralyces frem theeretical Language te C++ was the first shape analysis ‘Z:izzii _ E;W PP is based on the SRW analysis but
9 implement SRW Shape fnalysic for C++ to achieve strong updates t = NULL; > set.s of compatll?le shape
— for languages with destruc- graphs instead of a single graph. |
& implement MMH Shape fnalysic for C++ E tive updating. It uses finite This makes the analysis more pre- |
— static shape graphs to cise but also computationally more ‘
N write convers/en reut/neg fOr SLvapc CrQPLvS . approximate the structure expensive.
d /'m'chmcnt autemat/c V/'SuQL/'SQt/'Oh Of SLIQIPQ CV‘QPL!S m Of the heap.
E A context-insensitive analysis merges the
/mplement ceurcc-cede annetat/en fer analyscis results p— information available at different call sites of a
’ o) e At E; function. It analyses the body of each function
- interpret Shape Graphs te gather frliages . only once for all calling contexts combined and
. V‘ . . .
) mprove alias computation by including "commeon tails" B: returns the merged information to all call sites.
= With context-sensitivity the many invocations
cvaluate analycis information E' - of a function are kept separate during
Ler thar SO L ot . m; analysis; functions are analysed once for
R Asne mustoinpormation — every calling context. Clearly, this is more
— shew that SR decs net always perform ctrene updates B u precise than a context-insensitive analysis,
(but also more costly in general.
perferm tects using d/fferent analyg/c seftings K \
}" [nterpret recultc E ‘ i
O 5 \ COMPARISON A |
S O

- When one representation is
converted to the other,
graphs are often equal,
though the precision of the |
analyses may not be equal il {}

NN I S S P S W— N
SUMMARY

>

The impact of five orthogonal analysis parameters has been studied:

the precision is lost during conversion
- when expressions leading to the summary

location share a common tail of selectors
that starts at a common named node,
they too are must-aliases

Results
- ignoring context information produced the worst results
and took the most time - always use context information!

t {t} t {t
- shape analysis algorithm: SRW vs. NNH %
- context-sensitivity: with vs. without — e 1T . y < - 0
- retaining temporary variables for additional names vs. removing them y {Y} { t} { } vy~ R r_“
- alias test: lazy vs. extensive ‘ feerenenn, £ {t} n fx}
- alias test: compare final node vs. common tail of selectors 255 [R AL L - g t {}
]) .] . x t
-> comparison of 32 variations of shape-based alias analyses X { } y iyl y > iy} {t} {})
v b4 .
0 SRW NNH {t}) x > {x}
;) X {x} {x} t {t}
8 extensive | lazy extensive | lazy — ‘F—
- _ - _ T n Interpreting shape graphs x {x} A
naive naive '
- T T naive (as described in RWS02***)): %
- common - T common T T don’t convert indeterministic SRW static . leading to th d d
: : h h into NNH set of tibl - expressions leading to the same named node
D tails T tails T :h:g: g::zhsmbzt set of compatibie t-ali - tests aliasing of expressions in
- i i \ ' are must-atiases *every* single shape graph
extensive lazy extensive lazy - perform alias test directly on SRW static shape graph . . - . : :
_ _ - expressions leading to the summary location - only if they are must-aliases in every member shape
| - for analysis results already in SRW form, - conversely, only if there is no alias in any member e
tails tails I for NNH shape graph sets, our common tails test: - in all other cases: may-alias
-
C

LI A

- SRW shape analysis + extensive test cannot be more
precise than the lazy test on SRW graphs - always
perform the lazy test to save time!

- all other expressions leading to the
unshared summary location are not aliased

N \\

- precise NNH + fast lazy alias test is bad: always slower
than SRW but only in one case more precise

COMPARISON B

- Interpreting Shape Graphs
to obtain alias sets makes
different shape analyses
comparable by the size of
derived may-alias sets

- without tempvar or common tail extension, SRW and NNH
have comparable precision, but SRW is roughly 5x faster

- retaining temporary variables increased precision for both SRW
and NNH (23% and 21% smaller alias sets) but also increased
graph sizes and therefore anlysis runtime (3x) — expensive precision

gy

- common tails test increased precision only in combination with

O _ - Smaller may-alias sets are the
: NNH, but then at no measurable increased cost
O

better results and indicate a
more precise underlying |
shape analysis :

— cheap precision for expensive analysis

-> fastest: SRW + context + lazy - common tails - tempvars
-> most precise: NNH + context + extensive + common tails
(] (time x36, precision +28%)

| lcOL__—~ A \V/

= S = — ! [4 —_—

*) Mooly Sagiv, Thomas W. Reps, and Reinhard Wilhelm. **) Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. ***) Thomas W. Reps, Mooly Sagiv, and Reinhard Wilhelm.
Solving shape-analysis problems in languages with destructive updating. Principles of Program Analysis, chapter Shape Analysis, pages 102-129. Springer, 1999. Shape analysis and applications. In The Compiler Design Handbook: Optimizations and Machine
ACM Transactions on Programming Languages and Systems (TOPLAS), 20(1):1-50, January 1998. Code Generation, pages 175-218. CRC Press, 2002.

e <y () CYADEREITSN

