
Masterstudium
Software Engineering / Internet Computing

Diplomarbeitspräsentationen der Fakultät für Informatik

Viktor Pavlu
Technische Universität Wien

Institut für Computersprachen
Arbeitsbereich: Programmiersprachen und Übersetzerbau

Betreuer: Dipl.-Ing. Dr. Markus Schordan

int main(int argc, char **argv) {

 List *a = new List(1);
 List *t = new List(2);
 a->next = t;
 t->next = new List(3);
 t = NULL;…

alia
s setsalias sets

shape graphssource code

Comparison

QuestionOverview

alias sets

#define NULL ((List*)0)

class List {
 public:
 List(int pValue) {
 next = NULL;
 value = pValue;
 }
 List* next;
 int value;
};

int main(int argc, char **argv) {

 List *a = new List(1);
 List *t = new List(2);
 a->next = t;
 t->next = new List(3);
 t = NULL;

 List *p = a->next;

 p->next->value = 0; // Stmt A
 a->next->next->value = 42; // Stmt B

 int x = p->next->value; // Stmt C

 return 0;
}

(a->next) = (p)
(a->next->next) = (p->next)
(a->next->next->next) = (p->next->next)

extend SRW and NNH to be inter-procedural

port analyses from theoretical language to C++

implement SRW Shape Analysis for C++

implement NNH Shape Analysis for C++

write conversion routines for Shape Graphs

implement automatic visualisation of Shape Graphs

implement source-code annotation for analysis results

interpret Shape Graphs to gather Aliases

improve alias computation by including "common tails“

evaluate analysis information

	 show that SRW has no must-information

	 show that SRW does not always perform strong updates

perform tests using different analysis settings

interpret results

recommend a shape-based alias analysis variant

present thesis at epilog 2009

Summary

Kontakt: e0425543@student.tuwien.ac.at

we statically approximate the heap to find aliases required for analyses and the generation of efficient code

ANALYSIS RESULTS
- 	are NULL-pointers possibly being dereferenced?
	 -> 	 compiler issues a warning
- 	are p->next->next and a->next->next->next must-aliases?

-> 	 Stmt A is a definition without use and can be eliminated
- 	are p->next->next and a->next->next->next no aliases?

-> 	 Stmt B is independent of Stmt A and C, and could be parallelized or 	
	 reordered, possibly helping with register-allocation, for example

at compile-time, shape
analyses discover the
structure of objects
later allocated in the
heap

interprets shapegraph
to find expressions
that refer to the same
location

p

a {a} {p} {}next next

next

t

y

x

{y}

{x}

{t} {}next

next

next

next

 *) 	Mooly Sagiv, Thomas W. Reps, and Reinhard Wilhelm.
	 Solving shape-analysis problems in languages with destructive updating.
	 ACM Transactions on Programming Languages and Systems (TOPLAS), 20(1):1–50, January 1998.

**) 	Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.
	 Principles of Program Analysis, chapter Shape Analysis, pages 102–129. Springer, 1999.

***)	Thomas W. Reps, Mooly Sagiv, and Reinhard Wilhelm.
Shape analysis and applications. In The Compiler Design Handbook: Optimizations and Machine

	 Code Generation, pages 175–218. CRC Press, 2002.

SRW

The shape analysis by
Sagiv, Reps and Wilhelm*)
was the first shape analysis
to achieve strong updates
for languages with destruc-
tive updating. It uses finite
static shape graphs to
approximate the structure
of the heap.

NNH

The shape analysis described by
Nielson, Nielson, and Hankin in
„Principles of Program Analysis“**)
is based on the SRW analysis but
uses sets of compatible shape
graphs instead of a single graph.

This makes the analysis more pre-
cise but also computationally more
expensive.

- 	 tests aliasing of expressions in
every single shape graph

- 	only if they are must-aliases in every member shape
graph are they actually must-aliases

- 	 conversely, only if there is no alias in any member
shape graph are the expressions not aliased

- 	 in all other cases: may-alias

- 	don‘t convert indeterministic SRW static 		
shape graph into NNH set of compatible
shape graphs, but

- 	perform alias test directly on SRW static shape graph

- 	only one test instead of one per graph in the set

- 	 for analysis results already in SRW form,
there is no loss of precision

- 	 for NNH shape graph sets,
the precision is lost during conversion

comparison b

- 	Interpreting Shape Graphs
to obtain alias sets makes
different shape analyses
comparable by the size of
derived may-alias sets

- 	Smaller may-alias sets are the
better results and indicate a
more precise underlying
shape analysis

source code

shape analysis

alias an
alysis

y

x

{y}

{x} {}next

next

t {t} {}next

next

{y}

{x}

y

x

{y}

{x}

y

x {}next

t {t} {}next

x {x} {}next

t

y

x

{y}

{x}

{t}next

{}next

t

y

x

{y}

{x}

{t}next

{}next

next

t

y

x

{y}

{x}

{t}next

{}next

nexty

t

{y}

{t}

next

{x}x

{x}x

y

t

{y}

{t}

next

{}next

t

y

x

{y}

{x}

{t} {}next next

next

y

t

{y}

{t}

next

{}next y

t

{y}

{t}

next

{}next

next

x {x} {}next

next

y

t

{y}

{t}

next

{y}y

{x}x

{t}t

APPLICATION
-	 to create efficient code, a compiler needs precise information about the source program

- 	program analyses gather this information at compile-time

- 	using this information a program can be made faster, smaller, or less power-consuming

- 	pointers are very common in object-oriented languages, but they greatly reduce what
can be found out by program analyse -> good pointer alias analyses are required

- 	shape analyses are the most precise pointer analyses available

- 	relative quality of two shape analyses SRW* & NNH** is yet unknown

PROBLEM

- 	implemented parametrized versions of both shape analyses for C++

- 	derived 32 variations of shape-based alias analyses

- 	experimentally found sweet spots in runtime/precision tradeoff

- 	recommends two variations: for speed, for precision

OUR WORK

comparison a

- 	Results of different shape
analyses are hard to compare
directly

- 	When one representation is
converted to the other,
graphs are often equal,
though the precision of the
analyses may not be equal

lazy alias test

exten
sive alias test

____x____________X

X

________x____________x________________________X

X

X

X

X

X

X

X
X

X

A context-insensitive analysis merges the
information available at different call sites of a
function. It analyses the body of each function
only once for all calling contexts combined and
returns the merged information to all call sites.

With context-sensitivity the many invocations
of a function are kept separate during
analysis; functions are analysed once for
every calling context. Clearly, this is more
precise than a context-insensitive analysis,
but also more costly in general.

Interpreting shape graphs

naive (as described in RWS02***)):

- expressions leading to the same named node
are must-aliases

- expressions leading to the summary location 	
are may-aliases

our common tails test:

-	when expressions leading to the summary
location share a common tail of selectors
that starts at a common named node,
they too are must-aliases

-	all other expressions leading to the
unshared summary location are not aliased

CONTEXT

common tails

…

c
o
n
t
e
x
t

c
o
n
t
e
x
t

NNH
extensive

extensive

naive

naive

common
tails

common
tails

lazy

lazy

T

T

T

T
T

T

T

T

SRW
extensive

extensive

naive

naive

common
tails

common
tails

lazy

lazy

T

T
T

T

The impact of five orthogonal analysis parameters has been studied:
-	shape analysis algorithm: SRW vs. NNH
-	context-sensitivity: with vs. without
-	retaining temporary variables for additional names vs. removing them
-	alias test: lazy vs. extensive
-	alias test: compare final node vs. common tail of selectors

-> comparison of 32 variations of shape-based alias analyses

Results
-	ignoring context information produced the worst results
and took the most time – always use context information!

-	SRW shape analysis + extensive test cannot be more
precise than the lazy test on SRW graphs – always
perform the lazy test to save time!

-	precise NNH + fast lazy alias test is bad: always slower
than SRW but only in one case more precise

-	without tempvar or common tail extension, SRW and NNH
have comparable precision, but SRW is roughly 5x faster

-	retaining temporary variables increased precision for both SRW
and NNH (23% and 21% smaller alias sets) but also increased
graph sizes and therefore anlysis runtime (3x) – expensive precision

-	common tails test increased precision only in combination with
	 NNH, but then at no measurable increased cost
	 – cheap precision for expensive analysis

-> fastest: SRW + context + lazy - common tails - tempvars
-> most precise: NNH + context + extensive + common tails
		 (time x36, precision +28%)

