Masterstudium: Medieninformatik

Angelika Garz

Introduction

Layout analysis of ancient handwritten documents

- Glagolitic, $11^{\text {th }}$ century (a)
- Latin, $14^{\text {th }}$ century (b)
- German, Latin, 1396 (c)
- Challenges
- Heterogeneously textured, stained
- Corrugated writing
support
- Faded-out ink
- Fluctuating text lines
- Different writing styles
- Varying layouts

- Layout elements have structural similarities on the local level - Outlines, hachure, elongated strokes, angular/round shapes

Methodology

- Describing layout elements (junctions, endings, corners, circles)
- Interest Points (IP) by means of Difference of Gaussian (DoG)
- $2^{\text {nd }}$ order derivative scale-space
- Detecting blob like regions at local extrema
- Scale Invariant Feature Transform (SIFT)
- Gradient magnitude and gradient orientation
- Gradient histograms of local patches

- Supervised Classification (Svm)
- Classes: regular text, embellishments
- Headlines and initials belong to the same class
- Similar characteristics of local structure

Methodology - Localization

Cascading localization algorithm exploiting DoG IP

- Scale-based weighting
- Penalizing diminutive and large scales
- small: background clutter, dots, small structures, speckles
- large: whole decorative initials, spots, stains, ripples
- Marker points (b)
- IP of a specific size are most reliable
- Joining with IP overlapping with markers (c)
- Region-based processing (d)
- Rejecting small, sparse and unreliable object candidates
- Score maps (e, f)

Conclusion

- System handles degraded manuscript images (no binarization)
- Exploiting the local structure similarity of the elements
- Local descriptors at dedicated positions
- Cascading localization algorithm based on reliable interest points

Future work

[^0]
[^0]: - Distinction between decorative initials, plain initials, headings
 - Text line extraction method
 - Following the highest density of interest points - Density Based Clustering

