Involutive Substructural Logics
- Provide adequate languages to reason in presence of vague or incomplete information about resources, dynamic data structures and algebraic varieties.
- Obtained by extending Multiplicative Additive Linear Logic (MALL) [2] with Hilbert Axioms.

Analytic Calculi
Calculi where all derivations proceed by step-wise decomposition of the formula to be proved are called analytic. Analytic calculi are:
- Prerequisite for developing automated reasoning methods.
- Key to establish essential properties of the formalized logics.

Why Systematic Proof Theory?
Introducing analytic calculi is often laborious and error prone. Having automated procedures for this purpose is very desirable. The systematic procedure in [1] transforms Hilbert axioms in the language of MALL into equivalent analytic rules in sequent and hypersequent calculus.

Background

Multiplicative Additive Linear Logic MALL
The language of MALL consists of propositional variables \(\mathcal{V} = \{ a, b, c, \ldots \} \), their duals \(\mathcal{V}^⊥ = \{ a^⊥, b^⊥, c^⊥, \ldots \} \), the constants \(\{ ⊥, T, 1, 0 \} \), and the logical connectives \(\{ \&c, ⊗, □ \} \). The formulas in MALL are generated by:

\[
\mathcal{F} ::= \mathcal{V} | \mathcal{V}^⊥ | T | 1 | 0 | \mathcal{F} \& \mathcal{F} | \mathcal{F} \& \mathcal{F} | \mathcal{F} \oplus \mathcal{F} | \mathcal{F} \oplus \mathcal{F} | 1 | 0
\]

Logical Connectives
- The two conjunctions \(□ \) (times) and \&c (with) represent the availability of two actions. In case of □ both actions will be performed. In case of &c we can chose to perform either of the actions, but not both.
- The two disjunctions \(∨ \) (plus) and \(\oplus \) (the dual of &c) represents a non-deterministic choice of one action. \(∨ \) (the dual of □) represents the dependency between actions.
- The linear negation \((\cdot)^⊥ = \text{involution} \), i.e. \(A^⊥⊥ \Leftrightarrow A \).

The Hypersequent System HMLL

Involutive Substructural Logics

From Axioms to Analytic Rules - The Procedure
- Transforms axioms within classes \(N^2 \) and \(P^2 \) into a set of analytic rules.
- Uses the (hyper)sequent calculus for MALL (HMALL) as base calculus for axioms within \(N^2 \) (\(P^2 \)).
- The procedure consist of the following steps:
 1. Transforms axioms into equivalent (hyper)structural rules, i.e. rules with no occurrence of logical connectives.
 2. Verifies the acyclicity condition - if the (hyper)structural rule is cyclic applies weakening to obtain an acyclic rule.
 3. Applies rule completion to transform the acyclic rules to analytic.

Example
The axiom \(\text{Inv}: (A ⊥ &B)_{k1} \oplus (B ⊥ &A)_{k1} \in \mathcal{P}_3 \) is transformed into the analytic rule (com) through these steps:

\[
\Gamma \vdash (A ⊥ &B)_{k1} \oplus (B ⊥ &A)_{k1} \Rightarrow \Gamma \vdash A ⊥ &B \Rightarrow \Gamma \vdash B ⊥ &A \Rightarrow \Gamma \vdash A ⊥, B \Rightarrow \Gamma \vdash B ⊥, A \Rightarrow \Gamma \vdash \theta, A \Rightarrow \Gamma \vdash \sigma, B \Rightarrow \Gamma \vdash \theta, \sigma \Rightarrow \Gamma \vdash \theta, \sigma
\]

Figure: Transformation steps for linearity (com)

This Thesis
In this thesis we developed InvAxiomCalc, which provides an implementation in Prolog of the systematic procedure in [1] for axioms in the classes \(N^2 \) and \(P^2 \).

Implementation Details
The implementation consists of:
1. Identifying the class in Substructural Hierarchy of an axiom.
2. Transforming the axiom within class \(N^2 \) into a set of (hyper)structural rule.
3. Transforming, if necessary, the (hyper)structural rule to acyclic.
4. Applying the completion procedure to the rule from step (3).
5. Generating a \(\text{LaTeX} \) paper with the transformation results.

InvAxiomCalc as Command Line Tool
- InvAxiomCalc can be executed in a Prolog environment.
- Prints the generated results in the terminal.
- Generates a \(\text{LaTeX} \) paper with the transformation steps.

InvAxiomCalc on the Web
- A web interface for running InvAxiomCalc is available at https://logic.at/tinc/webinvaxiomcalc/.
- Displays the output printed by the terminal.
- Generates a paper with the transformation result.

References